基于加速度数据的驾驶员与冒充者识别方案的研究

Yuki Mori, R. Ono, T. Mitani, K. Naito, T. Yamazato
{"title":"基于加速度数据的驾驶员与冒充者识别方案的研究","authors":"Yuki Mori, R. Ono, T. Mitani, K. Naito, T. Yamazato","doi":"10.1109/ICCVE45908.2019.8965241","DOIUrl":null,"url":null,"abstract":"This paper proposes a continuous identification scheme monitoring a driver's behavior and a detection scheme for an impostor. The proposed scheme uses Long Short-Term Memory (LSTM) to create a classifier of the driver's behavior according to acceleration data and classifies a driver. Additionally, it also detects an impostor according to statistical information of output from the classifier. Experimental results show that an acceleration sensor on a real vehicle is enough to classify 15 drivers according to real-time driver's behavior. Additionally, the proposed scheme can detect an impostor through the verification of real experimental data.","PeriodicalId":384049,"journal":{"name":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Proposal for Identification Scheme of Driver and Impostor based on Acceleration Data\",\"authors\":\"Yuki Mori, R. Ono, T. Mitani, K. Naito, T. Yamazato\",\"doi\":\"10.1109/ICCVE45908.2019.8965241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a continuous identification scheme monitoring a driver's behavior and a detection scheme for an impostor. The proposed scheme uses Long Short-Term Memory (LSTM) to create a classifier of the driver's behavior according to acceleration data and classifies a driver. Additionally, it also detects an impostor according to statistical information of output from the classifier. Experimental results show that an acceleration sensor on a real vehicle is enough to classify 15 drivers according to real-time driver's behavior. Additionally, the proposed scheme can detect an impostor through the verification of real experimental data.\",\"PeriodicalId\":384049,\"journal\":{\"name\":\"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVE45908.2019.8965241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVE45908.2019.8965241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种监控驾驶员行为的连续识别方案和一种检测冒名顶替者的方案。该方案利用LSTM (Long - Short-Term Memory)方法根据加速数据建立驾驶员行为分类器,并对驾驶员进行分类。此外,它还根据分类器输出的统计信息检测冒名顶替者。实验结果表明,一个真实车辆上的加速度传感器可以根据驾驶员的实时行为对15个驾驶员进行分类。此外,该方案还可以通过真实实验数据的验证来检测冒名顶替者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proposal for Identification Scheme of Driver and Impostor based on Acceleration Data
This paper proposes a continuous identification scheme monitoring a driver's behavior and a detection scheme for an impostor. The proposed scheme uses Long Short-Term Memory (LSTM) to create a classifier of the driver's behavior according to acceleration data and classifies a driver. Additionally, it also detects an impostor according to statistical information of output from the classifier. Experimental results show that an acceleration sensor on a real vehicle is enough to classify 15 drivers according to real-time driver's behavior. Additionally, the proposed scheme can detect an impostor through the verification of real experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Automotive Antennas for Cellular Radio Communications Online validity monitor for vehicle dynamics models Multi-actuated ground vehicle tyre force estimation through a coupled 1D simulation-estimation framework Evaluation of an indoor localization system for a mobile robot Applications and Trends in Connected Vehicles: Debates and Conclusions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1