{"title":"基于选择性感知的图神经网络防范银行间信用评级攻击","authors":"Junyi Liu, Dawei Cheng, Changjun Jiang","doi":"10.24963/ijcai.2023/675","DOIUrl":null,"url":null,"abstract":"Accurately credit rating on Interbank assets is essential for a healthy financial environment and substantial economic development. But individual participants tend to provide manipulated information in order to attack the rating model to produce a higher score, which may conduct serious adverse effects on the economic system, such as the 2008 global financial crisis. To this end, in this paper, we propose a novel selective-aware graph neural network model (SA-GNN) for defense the Interbank credit rating attacks. In particular, we first simulate the rating information manipulating process by structural and feature poisoning attacks. Then we build a selective-aware defense graph neural model to adaptively prioritize the poisoning training data with Bernoulli distribution similarities. Finally, we optimize the model with weighed penalization on the objection function so that the model could differentiate the attackers. Extensive experiments on our collected real-world Interbank dataset, with over 20 thousand banks and their relations, demonstrate the superior performance of our proposed method in preventing credit rating attacks compared with the state-of-the-art baselines.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventing Attacks in Interbank Credit Rating with Selective-aware Graph Neural Network\",\"authors\":\"Junyi Liu, Dawei Cheng, Changjun Jiang\",\"doi\":\"10.24963/ijcai.2023/675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately credit rating on Interbank assets is essential for a healthy financial environment and substantial economic development. But individual participants tend to provide manipulated information in order to attack the rating model to produce a higher score, which may conduct serious adverse effects on the economic system, such as the 2008 global financial crisis. To this end, in this paper, we propose a novel selective-aware graph neural network model (SA-GNN) for defense the Interbank credit rating attacks. In particular, we first simulate the rating information manipulating process by structural and feature poisoning attacks. Then we build a selective-aware defense graph neural model to adaptively prioritize the poisoning training data with Bernoulli distribution similarities. Finally, we optimize the model with weighed penalization on the objection function so that the model could differentiate the attackers. Extensive experiments on our collected real-world Interbank dataset, with over 20 thousand banks and their relations, demonstrate the superior performance of our proposed method in preventing credit rating attacks compared with the state-of-the-art baselines.\",\"PeriodicalId\":394530,\"journal\":{\"name\":\"International Joint Conference on Artificial Intelligence\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Joint Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2023/675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preventing Attacks in Interbank Credit Rating with Selective-aware Graph Neural Network
Accurately credit rating on Interbank assets is essential for a healthy financial environment and substantial economic development. But individual participants tend to provide manipulated information in order to attack the rating model to produce a higher score, which may conduct serious adverse effects on the economic system, such as the 2008 global financial crisis. To this end, in this paper, we propose a novel selective-aware graph neural network model (SA-GNN) for defense the Interbank credit rating attacks. In particular, we first simulate the rating information manipulating process by structural and feature poisoning attacks. Then we build a selective-aware defense graph neural model to adaptively prioritize the poisoning training data with Bernoulli distribution similarities. Finally, we optimize the model with weighed penalization on the objection function so that the model could differentiate the attackers. Extensive experiments on our collected real-world Interbank dataset, with over 20 thousand banks and their relations, demonstrate the superior performance of our proposed method in preventing credit rating attacks compared with the state-of-the-art baselines.