基于选择性感知的图神经网络防范银行间信用评级攻击

Junyi Liu, Dawei Cheng, Changjun Jiang
{"title":"基于选择性感知的图神经网络防范银行间信用评级攻击","authors":"Junyi Liu, Dawei Cheng, Changjun Jiang","doi":"10.24963/ijcai.2023/675","DOIUrl":null,"url":null,"abstract":"Accurately credit rating on Interbank assets is essential for a healthy financial environment and substantial economic development. But individual participants tend to provide manipulated information in order to attack the rating model to produce a higher score, which may conduct serious adverse effects on the economic system, such as the 2008 global financial crisis. To this end, in this paper, we propose a novel selective-aware graph neural network model (SA-GNN) for defense the Interbank credit rating attacks. In particular, we first simulate the rating information manipulating process by structural and feature poisoning attacks. Then we build a selective-aware defense graph neural model to adaptively prioritize the poisoning training data with Bernoulli distribution similarities. Finally, we optimize the model with weighed penalization on the objection function so that the model could differentiate the attackers. Extensive experiments on our collected real-world Interbank dataset, with over 20 thousand banks and their relations, demonstrate the superior performance of our proposed method in preventing credit rating attacks compared with the state-of-the-art baselines.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventing Attacks in Interbank Credit Rating with Selective-aware Graph Neural Network\",\"authors\":\"Junyi Liu, Dawei Cheng, Changjun Jiang\",\"doi\":\"10.24963/ijcai.2023/675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately credit rating on Interbank assets is essential for a healthy financial environment and substantial economic development. But individual participants tend to provide manipulated information in order to attack the rating model to produce a higher score, which may conduct serious adverse effects on the economic system, such as the 2008 global financial crisis. To this end, in this paper, we propose a novel selective-aware graph neural network model (SA-GNN) for defense the Interbank credit rating attacks. In particular, we first simulate the rating information manipulating process by structural and feature poisoning attacks. Then we build a selective-aware defense graph neural model to adaptively prioritize the poisoning training data with Bernoulli distribution similarities. Finally, we optimize the model with weighed penalization on the objection function so that the model could differentiate the attackers. Extensive experiments on our collected real-world Interbank dataset, with over 20 thousand banks and their relations, demonstrate the superior performance of our proposed method in preventing credit rating attacks compared with the state-of-the-art baselines.\",\"PeriodicalId\":394530,\"journal\":{\"name\":\"International Joint Conference on Artificial Intelligence\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Joint Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2023/675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对银行间资产进行准确的信用评级,对健康的金融环境和经济的实质性发展至关重要。但个体参与者往往会提供被操纵的信息,以攻击评级模型以获得更高的分数,这可能会对经济系统产生严重的不利影响,例如2008年的全球金融危机。为此,本文提出了一种新的选择性感知图神经网络模型(SA-GNN)来防御银行间信用评级攻击。特别地,我们首先模拟了通过结构和特征中毒攻击来操纵评级信息的过程。然后,我们建立了一个选择性感知防御图神经模型,对具有伯努利分布相似度的中毒训练数据进行自适应排序。最后,通过对目标函数的加权惩罚对模型进行优化,使模型能够区分攻击者。在我们收集的真实世界银行间数据集(超过2万家银行及其关系)上进行的大量实验表明,与最先进的基线相比,我们提出的方法在防止信用评级攻击方面具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preventing Attacks in Interbank Credit Rating with Selective-aware Graph Neural Network
Accurately credit rating on Interbank assets is essential for a healthy financial environment and substantial economic development. But individual participants tend to provide manipulated information in order to attack the rating model to produce a higher score, which may conduct serious adverse effects on the economic system, such as the 2008 global financial crisis. To this end, in this paper, we propose a novel selective-aware graph neural network model (SA-GNN) for defense the Interbank credit rating attacks. In particular, we first simulate the rating information manipulating process by structural and feature poisoning attacks. Then we build a selective-aware defense graph neural model to adaptively prioritize the poisoning training data with Bernoulli distribution similarities. Finally, we optimize the model with weighed penalization on the objection function so that the model could differentiate the attackers. Extensive experiments on our collected real-world Interbank dataset, with over 20 thousand banks and their relations, demonstrate the superior performance of our proposed method in preventing credit rating attacks compared with the state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Formal Verification of Neuro-symbolic Multi-agent Systems RuleMatch: Matching Abstract Rules for Semi-supervised Learning of Human Standard Intelligence Tests Computing (1+epsilon)-Approximate Degeneracy in Sublinear Time AI and Decision Support for Sustainable Socio-Ecosystems Contrastive Learning and Reward Smoothing for Deep Portfolio Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1