血管网络是否足以区分肾细胞癌?

Alexis Zubiolo, E. Debreuve, D. Ambrosetti, P. Pognonec, X. Descombes
{"title":"血管网络是否足以区分肾细胞癌?","authors":"Alexis Zubiolo, E. Debreuve, D. Ambrosetti, P. Pognonec, X. Descombes","doi":"10.1109/CBMI.2016.7500255","DOIUrl":null,"url":null,"abstract":"The renal cell carcinoma (RCC) is the most frequent type of kidney cancer (between 90% and 95%). Twelve subtypes of RCC can be distinguished, among which the clear cell carcinoma (ccRCC) and the papillary carcinoma (pRCC) are the two most common ones (75% and 10% of the cases, respectively). After resection (i.e., surgical removal), the tumor is prepared for histological examination (fixation, slicing, staining, observation with a microscope). Along with protein expression and genetic tests, the histological study allows to classify the tumor and define its grade in order to make a prognosis and to take decisions for a potential additional chemotherapy treatment. Digital histology is a recent domain, since routinely, histological slices are studied directly under the microscope. The pioneer works deal with the automatic analysis of cells. However, a crucial factor for RCC classification is the tumoral architecture relying on the structure of the vascular network. For example, coarsely speaking, ccRCC is characterized by a “fishnet” structure while the pRCC has a tree-like structure. To our knowledge, no computerized analysis of the vascular network has been proposed yet. In this context, we developed a complete pipeline to extract the vascular network of a given histological slice and compute features of the underlying graph structure. Then, we studied the potential of such a feature-based approach in classifying a tumor into ccRCC or pRCC. Preliminary results on patient data are encouraging.","PeriodicalId":356608,"journal":{"name":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Is the vascular network discriminant enough to classify renal cell carcinoma?\",\"authors\":\"Alexis Zubiolo, E. Debreuve, D. Ambrosetti, P. Pognonec, X. Descombes\",\"doi\":\"10.1109/CBMI.2016.7500255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The renal cell carcinoma (RCC) is the most frequent type of kidney cancer (between 90% and 95%). Twelve subtypes of RCC can be distinguished, among which the clear cell carcinoma (ccRCC) and the papillary carcinoma (pRCC) are the two most common ones (75% and 10% of the cases, respectively). After resection (i.e., surgical removal), the tumor is prepared for histological examination (fixation, slicing, staining, observation with a microscope). Along with protein expression and genetic tests, the histological study allows to classify the tumor and define its grade in order to make a prognosis and to take decisions for a potential additional chemotherapy treatment. Digital histology is a recent domain, since routinely, histological slices are studied directly under the microscope. The pioneer works deal with the automatic analysis of cells. However, a crucial factor for RCC classification is the tumoral architecture relying on the structure of the vascular network. For example, coarsely speaking, ccRCC is characterized by a “fishnet” structure while the pRCC has a tree-like structure. To our knowledge, no computerized analysis of the vascular network has been proposed yet. In this context, we developed a complete pipeline to extract the vascular network of a given histological slice and compute features of the underlying graph structure. Then, we studied the potential of such a feature-based approach in classifying a tumor into ccRCC or pRCC. Preliminary results on patient data are encouraging.\",\"PeriodicalId\":356608,\"journal\":{\"name\":\"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"219 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2016.7500255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2016.7500255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

肾细胞癌(RCC)是肾癌中最常见的类型(90%至95%)。RCC可分为12种亚型,其中透明细胞癌(ccRCC)和乳头状癌(pRCC)是最常见的两种亚型(分别占75%和10%)。切除(即手术切除)后,准备肿瘤进行组织学检查(固定、切片、染色、显微镜观察)。通过蛋白质表达和基因检测,组织学研究可以对肿瘤进行分类并确定其级别,以便做出预后并决定是否进行潜在的额外化疗。数字组织学是最近的一个领域,因为通常,组织切片是直接在显微镜下研究的。先驱著作涉及细胞的自动分析。然而,RCC分类的一个关键因素是依赖于血管网络结构的肿瘤结构。例如,粗略地说,ccRCC具有“渔网”结构,而pRCC具有树状结构。据我们所知,还没有对血管网络进行计算机化分析的提议。在这种情况下,我们开发了一个完整的管道来提取给定组织学切片的血管网络,并计算底层图结构的特征。然后,我们研究了这种基于特征的方法将肿瘤分类为ccRCC或pRCC的潜力。患者数据的初步结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Is the vascular network discriminant enough to classify renal cell carcinoma?
The renal cell carcinoma (RCC) is the most frequent type of kidney cancer (between 90% and 95%). Twelve subtypes of RCC can be distinguished, among which the clear cell carcinoma (ccRCC) and the papillary carcinoma (pRCC) are the two most common ones (75% and 10% of the cases, respectively). After resection (i.e., surgical removal), the tumor is prepared for histological examination (fixation, slicing, staining, observation with a microscope). Along with protein expression and genetic tests, the histological study allows to classify the tumor and define its grade in order to make a prognosis and to take decisions for a potential additional chemotherapy treatment. Digital histology is a recent domain, since routinely, histological slices are studied directly under the microscope. The pioneer works deal with the automatic analysis of cells. However, a crucial factor for RCC classification is the tumoral architecture relying on the structure of the vascular network. For example, coarsely speaking, ccRCC is characterized by a “fishnet” structure while the pRCC has a tree-like structure. To our knowledge, no computerized analysis of the vascular network has been proposed yet. In this context, we developed a complete pipeline to extract the vascular network of a given histological slice and compute features of the underlying graph structure. Then, we studied the potential of such a feature-based approach in classifying a tumor into ccRCC or pRCC. Preliminary results on patient data are encouraging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Music Tweet Map: A browsing interface to explore the microblogosphere of music A novel architecture of semantic web reasoner based on transferable belief model Simple tag-based subclass representations for visually-varied image classes Crowdsourcing as self-fulfilling prophecy: Influence of discarding workers in subjective assessment tasks EIR — Efficient computer aided diagnosis framework for gastrointestinal endoscopies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1