泄漏式和倾入式破碎机运动学CFD结果与PIV测量结果的比较

B. Düz, J. Scharnke, R. Hallmann, J. Tukker, S. Khurana, Kevin Blanchard
{"title":"泄漏式和倾入式破碎机运动学CFD结果与PIV测量结果的比较","authors":"B. Düz, J. Scharnke, R. Hallmann, J. Tukker, S. Khurana, Kevin Blanchard","doi":"10.1115/omae2020-19268","DOIUrl":null,"url":null,"abstract":"\n The kinematics under spilling and plunging breakers are investigated using both experimental and numerical methods. In a modular laboratory flume, the breakers were generated using dispersive focusing, and the kinematics underneath them were measured utilizing the Particle Image Velocimetry (PIV) technique. Using the state-of-art high-speed video cameras and lasers, the kinematics were measured at a high sampling rate without needing phase-locked averaging. Afterwards, Computational Fluid Dynamics (CFD) simulations were carried out for comparison purposes. These simulations were run in single-phase using a finite-volume based Navier-Stokes solver with a piecewise-linear interface reconstruction scheme. The spilling and plunging breakers from the measurements were reconstructed in the computational domain using an iterative scheme. As a result a good match with the measured waves was obtained in the simulations. Results indicate that even though measured kinematics are somewhat higher than the simulated ones especially in the spilling and overturning regions, the CFD simulations can accurately capture the relevant details of the flow and produce reasonably accurate kinematics in comparison with the PIV results.","PeriodicalId":431910,"journal":{"name":"Volume 6B: Ocean Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of the CFD Results to PIV Measurements in Kinematics of Spilling and Plunging Breakers\",\"authors\":\"B. Düz, J. Scharnke, R. Hallmann, J. Tukker, S. Khurana, Kevin Blanchard\",\"doi\":\"10.1115/omae2020-19268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The kinematics under spilling and plunging breakers are investigated using both experimental and numerical methods. In a modular laboratory flume, the breakers were generated using dispersive focusing, and the kinematics underneath them were measured utilizing the Particle Image Velocimetry (PIV) technique. Using the state-of-art high-speed video cameras and lasers, the kinematics were measured at a high sampling rate without needing phase-locked averaging. Afterwards, Computational Fluid Dynamics (CFD) simulations were carried out for comparison purposes. These simulations were run in single-phase using a finite-volume based Navier-Stokes solver with a piecewise-linear interface reconstruction scheme. The spilling and plunging breakers from the measurements were reconstructed in the computational domain using an iterative scheme. As a result a good match with the measured waves was obtained in the simulations. Results indicate that even though measured kinematics are somewhat higher than the simulated ones especially in the spilling and overturning regions, the CFD simulations can accurately capture the relevant details of the flow and produce reasonably accurate kinematics in comparison with the PIV results.\",\"PeriodicalId\":431910,\"journal\":{\"name\":\"Volume 6B: Ocean Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6B: Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2020-19268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-19268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用实验方法和数值方法研究了溢流式破碎机和俯冲式破碎机的运动特性。在一个模块化的实验室水槽中,使用分散聚焦产生破碎,并使用粒子图像测速(PIV)技术测量其下方的运动学。利用最先进的高速摄像机和激光,在不需要锁相平均的情况下以高采样率测量运动学。随后,进行了计算流体动力学(CFD)模拟以进行比较。这些模拟是使用基于有限体积的Navier-Stokes求解器和分段线性界面重建方案在单相中运行的。采用迭代格式在计算域内重建测量得到的溢出型和跌落型破浪。结果表明,模拟结果与实测波吻合较好。结果表明,尽管实测的运动学值略高于模拟值,特别是在溢出和倾覆区域,但CFD模拟可以准确地捕捉到流动的相关细节,并与PIV结果相比较,得出较为准确的运动学值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of the CFD Results to PIV Measurements in Kinematics of Spilling and Plunging Breakers
The kinematics under spilling and plunging breakers are investigated using both experimental and numerical methods. In a modular laboratory flume, the breakers were generated using dispersive focusing, and the kinematics underneath them were measured utilizing the Particle Image Velocimetry (PIV) technique. Using the state-of-art high-speed video cameras and lasers, the kinematics were measured at a high sampling rate without needing phase-locked averaging. Afterwards, Computational Fluid Dynamics (CFD) simulations were carried out for comparison purposes. These simulations were run in single-phase using a finite-volume based Navier-Stokes solver with a piecewise-linear interface reconstruction scheme. The spilling and plunging breakers from the measurements were reconstructed in the computational domain using an iterative scheme. As a result a good match with the measured waves was obtained in the simulations. Results indicate that even though measured kinematics are somewhat higher than the simulated ones especially in the spilling and overturning regions, the CFD simulations can accurately capture the relevant details of the flow and produce reasonably accurate kinematics in comparison with the PIV results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study on Cavitation Motion of Underwater Vehicle With Protrusions Neural Network-Based Method for Structural Damage and Scour Estimation Using Modal Parameters and Dynamic Responses Detailed Study on the Behavior of Ships in Very Short Waves Nonlinear and Machine-Learning-Based Station-Keeping Control of an Unmanned Surface Vehicle Instantaneous Center of Rotation of a Vessel Submitted to Oblique Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1