利用实际事故及相关数据的形式概念分析预测交通事故

Shogo Kotani, Masaki Nakamura, K. Sakakibara, Tatsuo Motoyoshi, Keisuke Hoshikawa
{"title":"利用实际事故及相关数据的形式概念分析预测交通事故","authors":"Shogo Kotani, Masaki Nakamura, K. Sakakibara, Tatsuo Motoyoshi, Keisuke Hoshikawa","doi":"10.1109/ICMLC56445.2022.9941304","DOIUrl":null,"url":null,"abstract":"This study uses Formal Concept Analysis (FCA) to investigate factors of traffic accidents by analyzing actual traffic accident data including its date, place, injury severity, road shape, accident summary in a natural language, etc for each accident. FCA is a mathematical theory of data analysis based on formal contexts and concept lattices. We gather data related to each of the traffic accidents such as land use districts, traffic volumes, and so on, translate them into a binary context table as an input of FCA, and analyze conceptual structures as an output of FCA to investigate traffic accident factors.","PeriodicalId":117829,"journal":{"name":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Prediction of Traffic Accidents Using Formal Concept Analysis of Actual Accidents and Related Data\",\"authors\":\"Shogo Kotani, Masaki Nakamura, K. Sakakibara, Tatsuo Motoyoshi, Keisuke Hoshikawa\",\"doi\":\"10.1109/ICMLC56445.2022.9941304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study uses Formal Concept Analysis (FCA) to investigate factors of traffic accidents by analyzing actual traffic accident data including its date, place, injury severity, road shape, accident summary in a natural language, etc for each accident. FCA is a mathematical theory of data analysis based on formal contexts and concept lattices. We gather data related to each of the traffic accidents such as land use districts, traffic volumes, and so on, translate them into a binary context table as an input of FCA, and analyze conceptual structures as an output of FCA to investigate traffic accident factors.\",\"PeriodicalId\":117829,\"journal\":{\"name\":\"2022 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC56445.2022.9941304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC56445.2022.9941304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用形式概念分析(Formal Concept Analysis, FCA),通过分析实际的交通事故数据,包括事故发生的日期、地点、伤害严重程度、道路形状、事故的自然语言总结等,来调查交通事故的因素。FCA是一种基于形式语境和概念格的数据分析数学理论。我们收集每个交通事故的相关数据,如土地使用区域、交通量等,将其转换为二进制上下文表作为FCA的输入,并分析概念结构作为FCA的输出,以调查交通事故因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Prediction of Traffic Accidents Using Formal Concept Analysis of Actual Accidents and Related Data
This study uses Formal Concept Analysis (FCA) to investigate factors of traffic accidents by analyzing actual traffic accident data including its date, place, injury severity, road shape, accident summary in a natural language, etc for each accident. FCA is a mathematical theory of data analysis based on formal contexts and concept lattices. We gather data related to each of the traffic accidents such as land use districts, traffic volumes, and so on, translate them into a binary context table as an input of FCA, and analyze conceptual structures as an output of FCA to investigate traffic accident factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Semantic Segmentation for Vectorization of Line Drawings Based on Deep Neural Networks Real-Time Vehicle Counting by Deep-Learning Networks Unsupervised Representation Learning Method In Sensor Based Human Activity Recognition Improvement and Evaluation of Object Shape Presentation System Using Linear Actuators Examination of Analysis Methods for E-Learning System Grade Data Using Formal Concept Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1