基于逆强化学习的序列异常检测

Min-hwan Oh, G. Iyengar
{"title":"基于逆强化学习的序列异常检测","authors":"Min-hwan Oh, G. Iyengar","doi":"10.1145/3292500.3330932","DOIUrl":null,"url":null,"abstract":"One of the most interesting application scenarios in anomaly detection is when sequential data are targeted. For example, in a safety-critical environment, it is crucial to have an automatic detection system to screen the streaming data gathered by monitoring sensors and to report abnormal observations if detected in real-time. Oftentimes, stakes are much higher when these potential anomalies are intentional or goal-oriented. We propose an end-to-end framework for sequential anomaly detection using inverse reinforcement learning (IRL), whose objective is to determine the decision-making agent's underlying function which triggers his/her behavior. The proposed method takes the sequence of actions of a target agent (and possibly other meta information) as input. The agent's normal behavior is then understood by the reward function which is inferred via IRL. We use a neural network to represent a reward function. Using a learned reward function, we evaluate whether a new observation from the target agent follows a normal pattern. In order to construct a reliable anomaly detection method and take into consideration the confidence of the predicted anomaly score, we adopt a Bayesian approach for IRL. The empirical study on publicly available real-world data shows that our proposed method is effective in identifying anomalies.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Sequential Anomaly Detection using Inverse Reinforcement Learning\",\"authors\":\"Min-hwan Oh, G. Iyengar\",\"doi\":\"10.1145/3292500.3330932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most interesting application scenarios in anomaly detection is when sequential data are targeted. For example, in a safety-critical environment, it is crucial to have an automatic detection system to screen the streaming data gathered by monitoring sensors and to report abnormal observations if detected in real-time. Oftentimes, stakes are much higher when these potential anomalies are intentional or goal-oriented. We propose an end-to-end framework for sequential anomaly detection using inverse reinforcement learning (IRL), whose objective is to determine the decision-making agent's underlying function which triggers his/her behavior. The proposed method takes the sequence of actions of a target agent (and possibly other meta information) as input. The agent's normal behavior is then understood by the reward function which is inferred via IRL. We use a neural network to represent a reward function. Using a learned reward function, we evaluate whether a new observation from the target agent follows a normal pattern. In order to construct a reliable anomaly detection method and take into consideration the confidence of the predicted anomaly score, we adopt a Bayesian approach for IRL. The empirical study on publicly available real-world data shows that our proposed method is effective in identifying anomalies.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3330932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

异常检测中最有趣的应用场景之一是以顺序数据为目标。例如,在安全至关重要的环境中,拥有一个自动检测系统至关重要,该系统可以筛选监控传感器收集的流数据,并在检测到异常情况时实时报告。通常,当这些潜在的异常是有意的或以目标为导向时,风险要高得多。我们提出了一个使用逆强化学习(IRL)的端到端顺序异常检测框架,其目标是确定决策代理触发其行为的底层功能。所提出的方法将目标代理(可能还有其他元信息)的动作序列作为输入。然后,通过IRL推断的奖励函数可以理解代理的正常行为。我们用神经网络来表示奖励函数。使用学习的奖励函数,我们评估来自目标代理的新观察是否遵循正常模式。为了构建一种可靠的异常检测方法,并考虑到预测异常评分的置信度,我们对IRL采用贝叶斯方法。对公开可用的实际数据的实证研究表明,我们提出的方法在识别异常方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequential Anomaly Detection using Inverse Reinforcement Learning
One of the most interesting application scenarios in anomaly detection is when sequential data are targeted. For example, in a safety-critical environment, it is crucial to have an automatic detection system to screen the streaming data gathered by monitoring sensors and to report abnormal observations if detected in real-time. Oftentimes, stakes are much higher when these potential anomalies are intentional or goal-oriented. We propose an end-to-end framework for sequential anomaly detection using inverse reinforcement learning (IRL), whose objective is to determine the decision-making agent's underlying function which triggers his/her behavior. The proposed method takes the sequence of actions of a target agent (and possibly other meta information) as input. The agent's normal behavior is then understood by the reward function which is inferred via IRL. We use a neural network to represent a reward function. Using a learned reward function, we evaluate whether a new observation from the target agent follows a normal pattern. In order to construct a reliable anomaly detection method and take into consideration the confidence of the predicted anomaly score, we adopt a Bayesian approach for IRL. The empirical study on publicly available real-world data shows that our proposed method is effective in identifying anomalies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1