使用面部情绪和眼睛宽高比检测睡意

Sunsern Ceamanunkul, Sanchit Chawla
{"title":"使用面部情绪和眼睛宽高比检测睡意","authors":"Sunsern Ceamanunkul, Sanchit Chawla","doi":"10.1109/ICSEC51790.2020.9375240","DOIUrl":null,"url":null,"abstract":"Drowsy drivers are a major cause of many road accidents around the world. Facial emotions are known to be one of the visual cues for detecting drowsiness. In this paper, we propose a machine learning approach to drowsiness detection based on using a combination of facial emotion features extracted by using deep convolutional neural networks (CNN) and eye-aspect-ratio (EAR) features. The combined feature vectors are then used for training a classifier. From our experiments, we obtain a classification accuracy of 81.7% when we use the combined features with a support vector machines (SVM) classifier.","PeriodicalId":158728,"journal":{"name":"2020 24th International Computer Science and Engineering Conference (ICSEC)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Drowsiness Detection using Facial Emotions and Eye Aspect Ratios\",\"authors\":\"Sunsern Ceamanunkul, Sanchit Chawla\",\"doi\":\"10.1109/ICSEC51790.2020.9375240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drowsy drivers are a major cause of many road accidents around the world. Facial emotions are known to be one of the visual cues for detecting drowsiness. In this paper, we propose a machine learning approach to drowsiness detection based on using a combination of facial emotion features extracted by using deep convolutional neural networks (CNN) and eye-aspect-ratio (EAR) features. The combined feature vectors are then used for training a classifier. From our experiments, we obtain a classification accuracy of 81.7% when we use the combined features with a support vector machines (SVM) classifier.\",\"PeriodicalId\":158728,\"journal\":{\"name\":\"2020 24th International Computer Science and Engineering Conference (ICSEC)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 24th International Computer Science and Engineering Conference (ICSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEC51790.2020.9375240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 24th International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC51790.2020.9375240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

昏昏欲睡的司机是世界各地许多交通事故的主要原因。众所周知,面部情绪是检测睡意的视觉线索之一。在本文中,我们提出了一种基于深度卷积神经网络(CNN)和眼宽比(EAR)特征提取的面部情绪特征相结合的困倦检测机器学习方法。然后使用组合的特征向量来训练分类器。从我们的实验中,当我们将特征与支持向量机(SVM)分类器结合使用时,我们获得了81.7%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Drowsiness Detection using Facial Emotions and Eye Aspect Ratios
Drowsy drivers are a major cause of many road accidents around the world. Facial emotions are known to be one of the visual cues for detecting drowsiness. In this paper, we propose a machine learning approach to drowsiness detection based on using a combination of facial emotion features extracted by using deep convolutional neural networks (CNN) and eye-aspect-ratio (EAR) features. The combined feature vectors are then used for training a classifier. From our experiments, we obtain a classification accuracy of 81.7% when we use the combined features with a support vector machines (SVM) classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Astronomical Objects in the Galaxy M81 using Machine Learning Techniques A framework for cross-datasources agricultural research-to-impact analysis Abnormality Detection in Musculoskeletal Radiographs using EfficientNets Drowsiness Detection using Facial Emotions and Eye Aspect Ratios Approximating k-Connected m-Dominating Sets in Disk Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1