通过铁电单晶畴图的光波波前变形的多波长模拟

K. Steiger, P. Mokry
{"title":"通过铁电单晶畴图的光波波前变形的多波长模拟","authors":"K. Steiger, P. Mokry","doi":"10.1117/12.2257329","DOIUrl":null,"url":null,"abstract":"The paper presents analysis of the wavefront deformations of the optical waves transmitted through the ferroelectric single crystals with particular types of domain patterns by means of the numerical simulations. It is known that domain patterns influence the macroscopic properties of ferroelectric polydomain single crystals to a great extent. It is known that the domain spacing in ferroelectric single crystals can span the range from few tenths of nanometers to centimeters. Finally, it is known that measurements of the wavefront deformation can serve as input data for tomographic methods. In this paper, we perform exact numerical computations of the wavefront deformations of the optical wave passing through the ferroelectric domain patterns for different wavelengths. The considered simulations methods are based on solving the wave equation for the electromagnetic field. The computed numerical results are compared with simple analytical estimates. The key result of the paper is the benchmark of the limits for the three-dimensional observations of the ferroelectric domain patterns using digital holographic tomography.","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-wavelength simulations of the wavefront deformation of the optical wave passing through the domain patterns in ferroelectric single crystals\",\"authors\":\"K. Steiger, P. Mokry\",\"doi\":\"10.1117/12.2257329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents analysis of the wavefront deformations of the optical waves transmitted through the ferroelectric single crystals with particular types of domain patterns by means of the numerical simulations. It is known that domain patterns influence the macroscopic properties of ferroelectric polydomain single crystals to a great extent. It is known that the domain spacing in ferroelectric single crystals can span the range from few tenths of nanometers to centimeters. Finally, it is known that measurements of the wavefront deformation can serve as input data for tomographic methods. In this paper, we perform exact numerical computations of the wavefront deformations of the optical wave passing through the ferroelectric domain patterns for different wavelengths. The considered simulations methods are based on solving the wave equation for the electromagnetic field. The computed numerical results are compared with simple analytical estimates. The key result of the paper is the benchmark of the limits for the three-dimensional observations of the ferroelectric domain patterns using digital holographic tomography.\",\"PeriodicalId\":112965,\"journal\":{\"name\":\"Optical Angular Momentum\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Angular Momentum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2257329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Angular Momentum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2257329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用数值模拟的方法,分析了具有特定畴型的铁电单晶传输光波时的波前变形。畴型在很大程度上影响铁电多畴单晶的宏观性能。众所周知,铁电单晶中的畴间距可以跨越几十纳米到厘米的范围。最后,我们知道,波前变形的测量可以作为层析成像方法的输入数据。在本文中,我们对不同波长的光通过铁电畴图时的波前变形进行了精确的数值计算。所考虑的模拟方法是基于求解电磁场的波动方程。数值计算结果与简单的分析结果进行了比较。本文的关键结果是利用数字全息层析成像技术对铁电畴图形进行三维观测的极限基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-wavelength simulations of the wavefront deformation of the optical wave passing through the domain patterns in ferroelectric single crystals
The paper presents analysis of the wavefront deformations of the optical waves transmitted through the ferroelectric single crystals with particular types of domain patterns by means of the numerical simulations. It is known that domain patterns influence the macroscopic properties of ferroelectric polydomain single crystals to a great extent. It is known that the domain spacing in ferroelectric single crystals can span the range from few tenths of nanometers to centimeters. Finally, it is known that measurements of the wavefront deformation can serve as input data for tomographic methods. In this paper, we perform exact numerical computations of the wavefront deformations of the optical wave passing through the ferroelectric domain patterns for different wavelengths. The considered simulations methods are based on solving the wave equation for the electromagnetic field. The computed numerical results are compared with simple analytical estimates. The key result of the paper is the benchmark of the limits for the three-dimensional observations of the ferroelectric domain patterns using digital holographic tomography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile LIDT Eu:Lu2O3 transparent ceramics prepared by spark-plasma-sintering Optical design of the RODES hyperspectral LWIR imager Investigations of dental cavities: between x-ray radiography and OCT Investigation of tympanic membrane shape using digital holography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1