半盲方法分离真实世界的混合语音

F. Tordini, F. Piazza
{"title":"半盲方法分离真实世界的混合语音","authors":"F. Tordini, F. Piazza","doi":"10.1109/IJCNN.2002.1007681","DOIUrl":null,"url":null,"abstract":"The possibility of introducing a-priori information into multichannel blind deconvolution algorithms is investigated. The maximum likelihood (ML) approach allows one to introduce an important feature of the voice, namely the pitch, naturally into the 'blind' model, removing the nonlinearity and showing the advantages of productive contaminations by such related research fields as computer-aided sound analysis (CASA) and Bayesian theory.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A semi-blind approach to the separation of real world speech mixtures\",\"authors\":\"F. Tordini, F. Piazza\",\"doi\":\"10.1109/IJCNN.2002.1007681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possibility of introducing a-priori information into multichannel blind deconvolution algorithms is investigated. The maximum likelihood (ML) approach allows one to introduce an important feature of the voice, namely the pitch, naturally into the 'blind' model, removing the nonlinearity and showing the advantages of productive contaminations by such related research fields as computer-aided sound analysis (CASA) and Bayesian theory.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

研究了在多通道盲反卷积算法中引入先验信息的可能性。最大似然(ML)方法允许人们将声音的一个重要特征,即音高,自然地引入“盲”模型,消除非线性,并通过计算机辅助声音分析(CASA)和贝叶斯理论等相关研究领域显示出生产性污染的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A semi-blind approach to the separation of real world speech mixtures
The possibility of introducing a-priori information into multichannel blind deconvolution algorithms is investigated. The maximum likelihood (ML) approach allows one to introduce an important feature of the voice, namely the pitch, naturally into the 'blind' model, removing the nonlinearity and showing the advantages of productive contaminations by such related research fields as computer-aided sound analysis (CASA) and Bayesian theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1