基于gpu加速的大数据内存集群计算迭代稀疏矩阵向量乘法

Jiwu Peng, Zheng Xiao, Cen Chen, Wangdong Yang
{"title":"基于gpu加速的大数据内存集群计算迭代稀疏矩阵向量乘法","authors":"Jiwu Peng, Zheng Xiao, Cen Chen, Wangdong Yang","doi":"10.1109/FSKD.2016.7603391","DOIUrl":null,"url":null,"abstract":"Iterative SpMV (ISpMV) is a key operation in many graph-based data mining algorithms and machine learning algorithms. Along with the development of big data, the matrices can be so large, perhaps billion-scale, that the SpMV can not be implemented in a single computer. Therefore, it is a challenging issue to implement and optimize SpMV for large-scale data sets. In this paper, we used an in-memory heterogeneous CPU-GPU cluster computing platforms (IMHCPs) to efficiently solve billion-scale SpMV problem. A dedicated and efficient hierarchy partitioning strategy for sparse matrices and the vector is proposed. The partitioning strategy contains partitioning sparse matrices among workers in the cluster and among GPUs in one worker. More, the performance of the IMHCPs-based SpMV is evaluated from the aspects of computation efficiency and scalability.","PeriodicalId":373155,"journal":{"name":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Iterative sparse matrix-vector multiplication on in-memory cluster computing accelerated by GPUs for big data\",\"authors\":\"Jiwu Peng, Zheng Xiao, Cen Chen, Wangdong Yang\",\"doi\":\"10.1109/FSKD.2016.7603391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iterative SpMV (ISpMV) is a key operation in many graph-based data mining algorithms and machine learning algorithms. Along with the development of big data, the matrices can be so large, perhaps billion-scale, that the SpMV can not be implemented in a single computer. Therefore, it is a challenging issue to implement and optimize SpMV for large-scale data sets. In this paper, we used an in-memory heterogeneous CPU-GPU cluster computing platforms (IMHCPs) to efficiently solve billion-scale SpMV problem. A dedicated and efficient hierarchy partitioning strategy for sparse matrices and the vector is proposed. The partitioning strategy contains partitioning sparse matrices among workers in the cluster and among GPUs in one worker. More, the performance of the IMHCPs-based SpMV is evaluated from the aspects of computation efficiency and scalability.\",\"PeriodicalId\":373155,\"journal\":{\"name\":\"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2016.7603391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2016.7603391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

迭代SpMV (ISpMV)是许多基于图的数据挖掘算法和机器学习算法中的关键操作。随着大数据的发展,矩阵可能非常大,甚至可能达到十亿级,以至于SpMV无法在一台计算机上实现。因此,在大规模数据集上实现和优化SpMV是一个具有挑战性的问题。本文采用内存异构CPU-GPU集群计算平台(IMHCPs)来高效解决十亿规模的SpMV问题。针对稀疏矩阵和向量,提出了一种专用的、高效的层次划分策略。该分区策略包含集群中工作线程之间和一个工作线程中的gpu之间的稀疏矩阵分区。并从计算效率和可扩展性方面对基于imhcps的SpMV进行了性能评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iterative sparse matrix-vector multiplication on in-memory cluster computing accelerated by GPUs for big data
Iterative SpMV (ISpMV) is a key operation in many graph-based data mining algorithms and machine learning algorithms. Along with the development of big data, the matrices can be so large, perhaps billion-scale, that the SpMV can not be implemented in a single computer. Therefore, it is a challenging issue to implement and optimize SpMV for large-scale data sets. In this paper, we used an in-memory heterogeneous CPU-GPU cluster computing platforms (IMHCPs) to efficiently solve billion-scale SpMV problem. A dedicated and efficient hierarchy partitioning strategy for sparse matrices and the vector is proposed. The partitioning strategy contains partitioning sparse matrices among workers in the cluster and among GPUs in one worker. More, the performance of the IMHCPs-based SpMV is evaluated from the aspects of computation efficiency and scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel electrons drifting algorithm for non-linear optimization problems Performance assessment of fault classifier of chemical plant based on support vector machine A theoretical line losses calculation method of distribution system based on boosting algorithm Building vietnamese dependency treebank based on Chinese-Vietnamese bilingual word alignment Optimizing self-adaptive gender ratio of elephant search algorithm by min-max strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1