{"title":"基于sat的大步本地搜索","authors":"Morad Muslimany, M. Codish","doi":"10.1109/SYNASC.2018.00029","DOIUrl":null,"url":null,"abstract":"This paper introduces a hybrid search method for optimization problems which combines techniques from Local Search methods and from SAT-based methods. At each iteration, the method performs a \"big-step\" move on a subset of variables of the current solution. This step is achieved by encoding the big-step itself as an optimization problem and solving it using a SAT (MaxSAT) solver such that the solution of the big-step results in a higher-quality solution to the entire problem. Experimentation illustrates a clear benefit of the approach over both methods: Local Search methods and SAT-based methods.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAT-Based Big-Step Local Search\",\"authors\":\"Morad Muslimany, M. Codish\",\"doi\":\"10.1109/SYNASC.2018.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a hybrid search method for optimization problems which combines techniques from Local Search methods and from SAT-based methods. At each iteration, the method performs a \\\"big-step\\\" move on a subset of variables of the current solution. This step is achieved by encoding the big-step itself as an optimization problem and solving it using a SAT (MaxSAT) solver such that the solution of the big-step results in a higher-quality solution to the entire problem. Experimentation illustrates a clear benefit of the approach over both methods: Local Search methods and SAT-based methods.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"178 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper introduces a hybrid search method for optimization problems which combines techniques from Local Search methods and from SAT-based methods. At each iteration, the method performs a "big-step" move on a subset of variables of the current solution. This step is achieved by encoding the big-step itself as an optimization problem and solving it using a SAT (MaxSAT) solver such that the solution of the big-step results in a higher-quality solution to the entire problem. Experimentation illustrates a clear benefit of the approach over both methods: Local Search methods and SAT-based methods.