{"title":"基于sat的大步本地搜索","authors":"Morad Muslimany, M. Codish","doi":"10.1109/SYNASC.2018.00029","DOIUrl":null,"url":null,"abstract":"This paper introduces a hybrid search method for optimization problems which combines techniques from Local Search methods and from SAT-based methods. At each iteration, the method performs a \"big-step\" move on a subset of variables of the current solution. This step is achieved by encoding the big-step itself as an optimization problem and solving it using a SAT (MaxSAT) solver such that the solution of the big-step results in a higher-quality solution to the entire problem. Experimentation illustrates a clear benefit of the approach over both methods: Local Search methods and SAT-based methods.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAT-Based Big-Step Local Search\",\"authors\":\"Morad Muslimany, M. Codish\",\"doi\":\"10.1109/SYNASC.2018.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a hybrid search method for optimization problems which combines techniques from Local Search methods and from SAT-based methods. At each iteration, the method performs a \\\"big-step\\\" move on a subset of variables of the current solution. This step is achieved by encoding the big-step itself as an optimization problem and solving it using a SAT (MaxSAT) solver such that the solution of the big-step results in a higher-quality solution to the entire problem. Experimentation illustrates a clear benefit of the approach over both methods: Local Search methods and SAT-based methods.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"178 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种结合局部搜索方法和基于sat方法的优化问题混合搜索方法。在每次迭代中,该方法对当前解决方案的变量子集执行“大步骤”移动。这一步是通过将大步骤本身编码为优化问题,并使用SAT (MaxSAT)求解器进行求解来实现的,这样大步骤的解会产生对整个问题的更高质量的解。实验表明,该方法明显优于两种方法:本地搜索方法和基于sat的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAT-Based Big-Step Local Search
This paper introduces a hybrid search method for optimization problems which combines techniques from Local Search methods and from SAT-based methods. At each iteration, the method performs a "big-step" move on a subset of variables of the current solution. This step is achieved by encoding the big-step itself as an optimization problem and solving it using a SAT (MaxSAT) solver such that the solution of the big-step results in a higher-quality solution to the entire problem. Experimentation illustrates a clear benefit of the approach over both methods: Local Search methods and SAT-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning Model Proving Reachability Properties by Coinduction (Extended Abstract) An Image Inpainting Technique Based on Parallel Projection Methods Face Detection and Recognition Methods using Deep Learning in Autonomous Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1