基于平滑阈值估计方程的银行电话营销成功稀疏预测模型

Y. Kawasaki, Masao Ueki
{"title":"基于平滑阈值估计方程的银行电话营销成功稀疏预测模型","authors":"Y. Kawasaki, Masao Ueki","doi":"10.5183/JJSCS.1502003_217","DOIUrl":null,"url":null,"abstract":"In this paper, we attempt to build and evaluate several predictive models to predict success of telemarketing calls for selling bank long-term deposits using a publicly available set of data from a Portuguese retail bank collected from 2008 to 2013 (Moro et al., 2014, Decision Support Systems). The data include multiple predictor variables, either numeric or categorical, related with bank client, product and social-economic attributes. Dealing with a categorical predictor variable as multiple dummy variables increases model dimensionality, and redundancy in model parameterization must be of practical concern. This motivates us to assess prediction performance with more parsimonious modeling. We apply contemporary variable selection methods with penalization including lasso, elastic net, smoothly-clipped absolute deviation, minimum concave penalty as well as the smooth-threshold estimating equation. In addition to variable selection, the smooth-threshold estimating equation can achieve automatic grouping of predictor variables, which is an alternative sparse modeling to perform variable selection and could be suited to a certain problem, e.g., dummy variables created from categorical predictor variables. Predictive power of each modeling approach is assessed by repeating cross-validation experiments or sample splitting, one for training and another for testing.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"SPARSE PREDICTIVE MODELING FOR BANK TELEMARKETING SUCCESS USING SMOOTH-THRESHOLD ESTIMATING EQUATIONS\",\"authors\":\"Y. Kawasaki, Masao Ueki\",\"doi\":\"10.5183/JJSCS.1502003_217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we attempt to build and evaluate several predictive models to predict success of telemarketing calls for selling bank long-term deposits using a publicly available set of data from a Portuguese retail bank collected from 2008 to 2013 (Moro et al., 2014, Decision Support Systems). The data include multiple predictor variables, either numeric or categorical, related with bank client, product and social-economic attributes. Dealing with a categorical predictor variable as multiple dummy variables increases model dimensionality, and redundancy in model parameterization must be of practical concern. This motivates us to assess prediction performance with more parsimonious modeling. We apply contemporary variable selection methods with penalization including lasso, elastic net, smoothly-clipped absolute deviation, minimum concave penalty as well as the smooth-threshold estimating equation. In addition to variable selection, the smooth-threshold estimating equation can achieve automatic grouping of predictor variables, which is an alternative sparse modeling to perform variable selection and could be suited to a certain problem, e.g., dummy variables created from categorical predictor variables. Predictive power of each modeling approach is assessed by repeating cross-validation experiments or sample splitting, one for training and another for testing.\",\"PeriodicalId\":338719,\"journal\":{\"name\":\"Journal of the Japanese Society of Computational Statistics\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japanese Society of Computational Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5183/JJSCS.1502003_217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1502003_217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们试图建立和评估几个预测模型,以预测电话营销电话销售银行长期存款的成功,使用2008年至2013年收集的葡萄牙零售银行公开可用的数据集(Moro等人,2014年,决策支持系统)。这些数据包括与银行客户、产品和社会经济属性相关的多个预测变量,有的是数字变量,有的是分类变量。将一个分类预测变量作为多个虚拟变量来处理,增加了模型的维数,模型参数化中的冗余必须得到实际的关注。这促使我们用更简洁的建模来评估预测性能。我们采用现代的变量选择方法,包括套索法、弹性网法、平滑夹持绝对偏差法、最小凹惩罚法以及平滑阈值估计方程。除了变量选择之外,平滑阈值估计方程还可以实现预测变量的自动分组,这是进行变量选择的另一种稀疏建模方法,可以适用于某些问题,例如由分类预测变量创建的虚拟变量。每种建模方法的预测能力通过重复交叉验证实验或样本分割来评估,一个用于训练,另一个用于测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPARSE PREDICTIVE MODELING FOR BANK TELEMARKETING SUCCESS USING SMOOTH-THRESHOLD ESTIMATING EQUATIONS
In this paper, we attempt to build and evaluate several predictive models to predict success of telemarketing calls for selling bank long-term deposits using a publicly available set of data from a Portuguese retail bank collected from 2008 to 2013 (Moro et al., 2014, Decision Support Systems). The data include multiple predictor variables, either numeric or categorical, related with bank client, product and social-economic attributes. Dealing with a categorical predictor variable as multiple dummy variables increases model dimensionality, and redundancy in model parameterization must be of practical concern. This motivates us to assess prediction performance with more parsimonious modeling. We apply contemporary variable selection methods with penalization including lasso, elastic net, smoothly-clipped absolute deviation, minimum concave penalty as well as the smooth-threshold estimating equation. In addition to variable selection, the smooth-threshold estimating equation can achieve automatic grouping of predictor variables, which is an alternative sparse modeling to perform variable selection and could be suited to a certain problem, e.g., dummy variables created from categorical predictor variables. Predictive power of each modeling approach is assessed by repeating cross-validation experiments or sample splitting, one for training and another for testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ENHANCING POWER OF SCORE TESTS FOR REGRESSION MODELS VIA FISHER TRANSFORMATION ANNOUNCEMENT: ON PUBLICATION OF THE JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE DISTRIBUTION OF THE LARGEST EIGENVALUE OF AN ELLIPTICAL WISHART MATRIX AND ITS SIMULATION COMMENT: ON CLOSING OF ENGLISH JOURNAL OF JSCS AND THE BIRTH OF NEW JOURNAL JJSD INFERENCE FOR THE EXTENT PARAMETER OF DAMAGE BY TSUNAMI WITH POINCARE CONES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1