NodEO,基于JavaScript的多范式分布式进化算法平台

J. J. M. Guervós, Pedro Ángel Castillo Valdivieso, A. García, Anna I. Esparcia-Alcázar, Víctor Manuel Rivas Santos
{"title":"NodEO,基于JavaScript的多范式分布式进化算法平台","authors":"J. J. M. Guervós, Pedro Ángel Castillo Valdivieso, A. García, Anna I. Esparcia-Alcázar, Víctor Manuel Rivas Santos","doi":"10.1145/2598394.2605688","DOIUrl":null,"url":null,"abstract":"After more than fifteen years, JavaScript has finally risen as a popular language for implementing all kind of applications, from server-based to rich internet applications. The fact that it is implemented in the browser and in server-side tools makes it interesting for designing evolutionary algorithm frameworks that encompass both tiers, but besides, they allow a change in paradigm that goes beyond the canonical evolutionary algorithm. In this paper we will experiment with different architectures, client-server and peer to peer to assess which ones offer most advantages in terms of performance, scalability and ease of use for the computer scientist. All implementations have been released as open source, and besides showing that the concept of working with evolutionary algorithms in JavaScript can be done efficiently, we prove that a master-slave parallel architecture offers the best combination of time and algorithmic improvements in a parallel evolutionary algorithm that leverages JavaScript implementation features.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"NodEO, a multi-paradigm distributed evolutionary algorithm platform in JavaScript\",\"authors\":\"J. J. M. Guervós, Pedro Ángel Castillo Valdivieso, A. García, Anna I. Esparcia-Alcázar, Víctor Manuel Rivas Santos\",\"doi\":\"10.1145/2598394.2605688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After more than fifteen years, JavaScript has finally risen as a popular language for implementing all kind of applications, from server-based to rich internet applications. The fact that it is implemented in the browser and in server-side tools makes it interesting for designing evolutionary algorithm frameworks that encompass both tiers, but besides, they allow a change in paradigm that goes beyond the canonical evolutionary algorithm. In this paper we will experiment with different architectures, client-server and peer to peer to assess which ones offer most advantages in terms of performance, scalability and ease of use for the computer scientist. All implementations have been released as open source, and besides showing that the concept of working with evolutionary algorithms in JavaScript can be done efficiently, we prove that a master-slave parallel architecture offers the best combination of time and algorithmic improvements in a parallel evolutionary algorithm that leverages JavaScript implementation features.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2605688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2605688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

经过15年多的发展,JavaScript终于成为实现各种应用程序的流行语言,从基于服务器的应用程序到富互联网应用程序。事实上,它是在浏览器和服务器端工具中实现的,这使得设计包含这两层的进化算法框架变得很有趣,但除此之外,它们允许范式的变化,超出了规范的进化算法。在本文中,我们将尝试不同的架构,客户端-服务器和点对点,以评估哪种架构在性能、可扩展性和易用性方面为计算机科学家提供了最大的优势。所有的实现都是开源的,除了表明在JavaScript中使用进化算法的概念可以有效地完成之外,我们还证明了主从并行架构在利用JavaScript实现特性的并行进化算法中提供了时间和算法改进的最佳组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NodEO, a multi-paradigm distributed evolutionary algorithm platform in JavaScript
After more than fifteen years, JavaScript has finally risen as a popular language for implementing all kind of applications, from server-based to rich internet applications. The fact that it is implemented in the browser and in server-side tools makes it interesting for designing evolutionary algorithm frameworks that encompass both tiers, but besides, they allow a change in paradigm that goes beyond the canonical evolutionary algorithm. In this paper we will experiment with different architectures, client-server and peer to peer to assess which ones offer most advantages in terms of performance, scalability and ease of use for the computer scientist. All implementations have been released as open source, and besides showing that the concept of working with evolutionary algorithms in JavaScript can be done efficiently, we prove that a master-slave parallel architecture offers the best combination of time and algorithmic improvements in a parallel evolutionary algorithm that leverages JavaScript implementation features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1