基于区间算法的不确定机器人轨迹缩放与碰撞检测

Michael Wagner, Stefan B. Liu, Andrea Giusti, M. Althoff
{"title":"基于区间算法的不确定机器人轨迹缩放与碰撞检测","authors":"Michael Wagner, Stefan B. Liu, Andrea Giusti, M. Althoff","doi":"10.1109/IRC.2018.00015","DOIUrl":null,"url":null,"abstract":"We consider two fundamental problems in control of robot manipulators: dynamic scaling of trajectories and collision detection using proprioceptive sensors. While most existing methods approach these problems by assuming accurate knowledge of the robot dynamics, we relax this assumption and account for uncertain model parameters and external disturbances. Our approach is based on the use of a recently proposed interval-arithmetic-based recursive Newton-Euler algorithm. This algorithm enables the efficient numerical computation of over-approximative sets of torques/forces arising from uncertain model parameters. The over-approximative nature of these sets is exploited in this work in order to provide a formally robust trajectory scaling and collision detection strategy. The effectiveness of the proposed approaches has been verified by means of experiments on a 6 degrees-of-freedom robot manipulator with uncertain dynamics.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Interval-Arithmetic-Based Trajectory Scaling and Collision Detection for Robots with Uncertain Dynamics\",\"authors\":\"Michael Wagner, Stefan B. Liu, Andrea Giusti, M. Althoff\",\"doi\":\"10.1109/IRC.2018.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider two fundamental problems in control of robot manipulators: dynamic scaling of trajectories and collision detection using proprioceptive sensors. While most existing methods approach these problems by assuming accurate knowledge of the robot dynamics, we relax this assumption and account for uncertain model parameters and external disturbances. Our approach is based on the use of a recently proposed interval-arithmetic-based recursive Newton-Euler algorithm. This algorithm enables the efficient numerical computation of over-approximative sets of torques/forces arising from uncertain model parameters. The over-approximative nature of these sets is exploited in this work in order to provide a formally robust trajectory scaling and collision detection strategy. The effectiveness of the proposed approaches has been verified by means of experiments on a 6 degrees-of-freedom robot manipulator with uncertain dynamics.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们考虑了机器人操纵器控制中的两个基本问题:轨迹的动态缩放和使用本体感觉传感器的碰撞检测。虽然大多数现有方法通过假设机器人动力学的准确知识来解决这些问题,但我们放宽了这一假设,并考虑了不确定的模型参数和外部干扰。我们的方法是基于最近提出的基于区间算术的递归牛顿-欧拉算法的使用。该算法能够有效地数值计算由不确定模型参数引起的过近似的扭矩/力集。在这项工作中,为了提供正式的鲁棒轨迹缩放和碰撞检测策略,利用了这些集合的过近似性质。在具有不确定动力学特性的6自由度机械臂上进行了实验,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interval-Arithmetic-Based Trajectory Scaling and Collision Detection for Robots with Uncertain Dynamics
We consider two fundamental problems in control of robot manipulators: dynamic scaling of trajectories and collision detection using proprioceptive sensors. While most existing methods approach these problems by assuming accurate knowledge of the robot dynamics, we relax this assumption and account for uncertain model parameters and external disturbances. Our approach is based on the use of a recently proposed interval-arithmetic-based recursive Newton-Euler algorithm. This algorithm enables the efficient numerical computation of over-approximative sets of torques/forces arising from uncertain model parameters. The over-approximative nature of these sets is exploited in this work in order to provide a formally robust trajectory scaling and collision detection strategy. The effectiveness of the proposed approaches has been verified by means of experiments on a 6 degrees-of-freedom robot manipulator with uncertain dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic Intrinsically Motivated Learner Improving Code Quality in ROS Packages Using a Temporal Extension of First-Order Logic Rapid Qualification of Mereotopological Relationships Using Signed Distance Fields Towards a Multi-mission QoS and Energy Manager for Autonomous Mobile Robots A Computational Framework for Complementary Situational Awareness (CSA) in Surgical Assistant Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1