一种用于人像图像美学质量自动评估的深度学习方法

Poom Wettayakorn, Siripong Traivijitkhun, Ponpat Phetchai, Suppawong Tuarob
{"title":"一种用于人像图像美学质量自动评估的深度学习方法","authors":"Poom Wettayakorn, Siripong Traivijitkhun, Ponpat Phetchai, Suppawong Tuarob","doi":"10.1109/JCSSE.2018.8457381","DOIUrl":null,"url":null,"abstract":"Generally, a traditional methodology to assess the aesthetics (appreciating beauty) of a photograph involves a number of professional photographers rating the photo based on given criteria and providing ensemble feedback minimize bias. Such a traditional photo assessment method, however, is not applicable to massive users, especially in real-time. To mitigate such an issue, recent studies have devoted on developing algorithms to automatically provide feedback to photo takers. Most of such algorithms train variants of neural networks using ground-truth photos assessed by professional photographers. Regardless, most existing photo assessment algorithms provide the aesthetic score as a single number. From our observation, users typically use multiple criteria to justify the beautifulness of a photo, and hence a single rating score may not be informative. In this paper, we propose a novel Fine-tuned Inception with Fully Connected and Regression Layers model which gives five attribute scores: vivid colour, colour harmony, lighting, balance of elements, and depth of field. T his s olution i ncorporates t he p re-trained inception model which is the state-of-the-art model for processing images. Our proposed algorithm enhances the existing state-of-the-art by fine-tuning the parameters, introducing fully connected layers, and attaching the regression layers to compute the numeric score for each focus attribute. The experimental results show that our model helps to decrease the mean absolute error (MAE) to 0.211, benchmarking on the aesthetics and attributes datasets provided in the previous studies.","PeriodicalId":338973,"journal":{"name":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Deep Learning Methodology for Automatic Assessment of Portrait Image Aesthetic Quality\",\"authors\":\"Poom Wettayakorn, Siripong Traivijitkhun, Ponpat Phetchai, Suppawong Tuarob\",\"doi\":\"10.1109/JCSSE.2018.8457381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally, a traditional methodology to assess the aesthetics (appreciating beauty) of a photograph involves a number of professional photographers rating the photo based on given criteria and providing ensemble feedback minimize bias. Such a traditional photo assessment method, however, is not applicable to massive users, especially in real-time. To mitigate such an issue, recent studies have devoted on developing algorithms to automatically provide feedback to photo takers. Most of such algorithms train variants of neural networks using ground-truth photos assessed by professional photographers. Regardless, most existing photo assessment algorithms provide the aesthetic score as a single number. From our observation, users typically use multiple criteria to justify the beautifulness of a photo, and hence a single rating score may not be informative. In this paper, we propose a novel Fine-tuned Inception with Fully Connected and Regression Layers model which gives five attribute scores: vivid colour, colour harmony, lighting, balance of elements, and depth of field. T his s olution i ncorporates t he p re-trained inception model which is the state-of-the-art model for processing images. Our proposed algorithm enhances the existing state-of-the-art by fine-tuning the parameters, introducing fully connected layers, and attaching the regression layers to compute the numeric score for each focus attribute. The experimental results show that our model helps to decrease the mean absolute error (MAE) to 0.211, benchmarking on the aesthetics and attributes datasets provided in the previous studies.\",\"PeriodicalId\":338973,\"journal\":{\"name\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2018.8457381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2018.8457381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

一般来说,评估照片美学(欣赏美)的传统方法包括许多专业摄影师根据给定的标准对照片进行评级,并提供整体反馈,以最大限度地减少偏见。然而,这种传统的照片评估方法并不适用于大量用户,尤其是实时用户。为了缓解这一问题,最近的研究致力于开发自动向拍照者提供反馈的算法。大多数这样的算法使用由专业摄影师评估的真实照片来训练神经网络的变体。无论如何,大多数现有的照片评估算法将美学分数作为单个数字提供。从我们的观察来看,用户通常会使用多种标准来证明照片的美观性,因此单一的评级分数可能不具有信息性。在本文中,我们提出了一种新颖的具有完全连接和回归层的微调初始模型,该模型给出了五个属性分数:生动的色彩,色彩和谐,照明,元素平衡和景深。这个解决方案与重新训练的初始模型相结合,初始模型是处理图像的最先进的模型。我们提出的算法通过微调参数、引入全连接层和附加回归层来计算每个焦点属性的数值得分,从而增强了现有的技术水平。实验结果表明,我们的模型有助于将平均绝对误差(MAE)降低到0.211,并对先前研究中提供的美学和属性数据集进行基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Learning Methodology for Automatic Assessment of Portrait Image Aesthetic Quality
Generally, a traditional methodology to assess the aesthetics (appreciating beauty) of a photograph involves a number of professional photographers rating the photo based on given criteria and providing ensemble feedback minimize bias. Such a traditional photo assessment method, however, is not applicable to massive users, especially in real-time. To mitigate such an issue, recent studies have devoted on developing algorithms to automatically provide feedback to photo takers. Most of such algorithms train variants of neural networks using ground-truth photos assessed by professional photographers. Regardless, most existing photo assessment algorithms provide the aesthetic score as a single number. From our observation, users typically use multiple criteria to justify the beautifulness of a photo, and hence a single rating score may not be informative. In this paper, we propose a novel Fine-tuned Inception with Fully Connected and Regression Layers model which gives five attribute scores: vivid colour, colour harmony, lighting, balance of elements, and depth of field. T his s olution i ncorporates t he p re-trained inception model which is the state-of-the-art model for processing images. Our proposed algorithm enhances the existing state-of-the-art by fine-tuning the parameters, introducing fully connected layers, and attaching the regression layers to compute the numeric score for each focus attribute. The experimental results show that our model helps to decrease the mean absolute error (MAE) to 0.211, benchmarking on the aesthetics and attributes datasets provided in the previous studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Android Forensic and Security Assessment for Hospital and Stock-and-Trade Applications in Thailand Traffic State Prediction Using Convolutional Neural Network Development of Low-Cost in-the-Ear EEG Prototype JCSSE 2018 Title Page JCSSE 2018 Session Chairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1