基于位矢量随机流的记忆电阻横条内存流随机计算

Sunny Raj, Dwaipayan Chakraborty, Sumit Kumar Jha
{"title":"基于位矢量随机流的记忆电阻横条内存流随机计算","authors":"Sunny Raj, Dwaipayan Chakraborty, Sumit Kumar Jha","doi":"10.1109/NANO.2017.8117440","DOIUrl":null,"url":null,"abstract":"Nanoscale memristor crossbars provide a natural fabric for in-memory computing and have recently been shown to efficiently perform exact logical operations by exploiting the flow of current through crossbar interconnects. In this paper, we extend the flow-based crossbar computing approach to approximate stochastic computing. First, we show that the natural flow of current through probabilistically-switching memristive nano-switches in crossbars can be used to perform approximate stochastic computing. Second, we demonstrate that optimizing the approximate stochastic computations in terms of the number of required random bits leads to stochastic computing using bit-vector stochastic streams of varying bit-widths — a hybrid of the traditional full-width bit-vector computing approach and the traditional bit-stream stochastic computing methodology. This hybrid approach based on bit-vector stochastic streams of different bit-widths can be efficiently implemented using an in-memory nanoscale memristive crossbar computing framework.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"In-memory flow-based stochastic computing on memristor crossbars using bit-vector stochastic streams\",\"authors\":\"Sunny Raj, Dwaipayan Chakraborty, Sumit Kumar Jha\",\"doi\":\"10.1109/NANO.2017.8117440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoscale memristor crossbars provide a natural fabric for in-memory computing and have recently been shown to efficiently perform exact logical operations by exploiting the flow of current through crossbar interconnects. In this paper, we extend the flow-based crossbar computing approach to approximate stochastic computing. First, we show that the natural flow of current through probabilistically-switching memristive nano-switches in crossbars can be used to perform approximate stochastic computing. Second, we demonstrate that optimizing the approximate stochastic computations in terms of the number of required random bits leads to stochastic computing using bit-vector stochastic streams of varying bit-widths — a hybrid of the traditional full-width bit-vector computing approach and the traditional bit-stream stochastic computing methodology. This hybrid approach based on bit-vector stochastic streams of different bit-widths can be efficiently implemented using an in-memory nanoscale memristive crossbar computing framework.\",\"PeriodicalId\":292399,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2017.8117440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2017.8117440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

纳米级忆阻器横条为内存计算提供了一种天然的结构,并且最近被证明可以有效地执行精确的逻辑运算,利用通过横条互连的电流。本文将基于流的横杆计算方法推广到近似随机计算。首先,我们证明了自然电流通过概率开关记忆纳米开关在横杆可以用来执行近似随机计算。其次,我们证明了根据所需随机比特的数量优化近似随机计算导致使用可变比特宽度的比特向量随机流进行随机计算-传统全宽度比特向量计算方法和传统比特流随机计算方法的混合。这种基于不同位宽的位矢量随机流的混合方法可以在内存纳米级忆阻交叉计算框架中有效地实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-memory flow-based stochastic computing on memristor crossbars using bit-vector stochastic streams
Nanoscale memristor crossbars provide a natural fabric for in-memory computing and have recently been shown to efficiently perform exact logical operations by exploiting the flow of current through crossbar interconnects. In this paper, we extend the flow-based crossbar computing approach to approximate stochastic computing. First, we show that the natural flow of current through probabilistically-switching memristive nano-switches in crossbars can be used to perform approximate stochastic computing. Second, we demonstrate that optimizing the approximate stochastic computations in terms of the number of required random bits leads to stochastic computing using bit-vector stochastic streams of varying bit-widths — a hybrid of the traditional full-width bit-vector computing approach and the traditional bit-stream stochastic computing methodology. This hybrid approach based on bit-vector stochastic streams of different bit-widths can be efficiently implemented using an in-memory nanoscale memristive crossbar computing framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nanotechnology in multimodal theranostic capsule endoscopy Synthesis of high-strength and electronically conductive triple network gels with self-healing properties by the restraint method Graphene for surface enhanced Raman scattering (SERS) molecular sensors Zero-valent iron based nanoparticles selectively inhibit cancerous cells through mitochondria-mediated autophagy Fabrication and test of a tube shaped e-skin sensor on a colon simulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1