类似osek的内核支持引擎控制应用程序下的EDF调度

Vincenzo Apuzzo, Alessandro Biondi, G. Buttazzo
{"title":"类似osek的内核支持引擎控制应用程序下的EDF调度","authors":"Vincenzo Apuzzo, Alessandro Biondi, G. Buttazzo","doi":"10.1109/RTAS.2016.7461345","DOIUrl":null,"url":null,"abstract":"Engine control applications typically include computational activities consisting of periodic tasks, activated by timers, and engine-triggered tasks, activated at specific angular positions of the crankshaft. Such tasks are typically managed by a OSEK-compliant real-time kernel using a fixed-priority scheduler, as specified in the AUTOSAR standard adopted by most automotive industries. Recent theoretical results, however, have highlighted significant limitations of fixed-priority scheduling in managing engine-triggered tasks that could be solved by a dynamic scheduling policy. To address this issue, this paper proposes a new kernel implementation within the ERIKA Enterprise operating system, providing EDF scheduling for both periodic and engine-triggered tasks. The proposed kernel has been conceived to have an API similar to the AUTOSAR/OSEK standard one, limiting the effort needed to use the new kernel with an existing legacy application. The proposed kernel implementation is discussed and evaluated in terms of run-time overhead and footprint. In addition, a simulation framework is presented, showing a powerful environment for studying the execution of tasks under the proposed kernel.","PeriodicalId":338179,"journal":{"name":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"OSEK-Like Kernel Support for Engine Control Applications under EDF Scheduling\",\"authors\":\"Vincenzo Apuzzo, Alessandro Biondi, G. Buttazzo\",\"doi\":\"10.1109/RTAS.2016.7461345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engine control applications typically include computational activities consisting of periodic tasks, activated by timers, and engine-triggered tasks, activated at specific angular positions of the crankshaft. Such tasks are typically managed by a OSEK-compliant real-time kernel using a fixed-priority scheduler, as specified in the AUTOSAR standard adopted by most automotive industries. Recent theoretical results, however, have highlighted significant limitations of fixed-priority scheduling in managing engine-triggered tasks that could be solved by a dynamic scheduling policy. To address this issue, this paper proposes a new kernel implementation within the ERIKA Enterprise operating system, providing EDF scheduling for both periodic and engine-triggered tasks. The proposed kernel has been conceived to have an API similar to the AUTOSAR/OSEK standard one, limiting the effort needed to use the new kernel with an existing legacy application. The proposed kernel implementation is discussed and evaluated in terms of run-time overhead and footprint. In addition, a simulation framework is presented, showing a powerful environment for studying the execution of tasks under the proposed kernel.\",\"PeriodicalId\":338179,\"journal\":{\"name\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2016.7461345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2016.7461345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

发动机控制应用通常包括由计时器激活的周期性任务和由发动机触发的任务组成的计算活动,这些任务在曲轴的特定角度位置激活。这些任务通常由符合osek的实时内核管理,使用固定优先级调度器,正如大多数汽车行业采用的AUTOSAR标准中指定的那样。然而,最近的理论结果强调了固定优先级调度在管理引擎触发的任务方面的显著局限性,这些任务可以通过动态调度策略来解决。为了解决这个问题,本文在ERIKA Enterprise操作系统中提出了一个新的内核实现,为周期性和引擎触发的任务提供EDF调度。提议的内核被设想为具有类似于AUTOSAR/OSEK标准的API,从而限制了将新内核与现有遗留应用程序一起使用所需的工作量。根据运行时开销和内存占用来讨论和评估所建议的内核实现。此外,还提供了一个仿真框架,为研究该内核下任务的执行提供了一个强大的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OSEK-Like Kernel Support for Engine Control Applications under EDF Scheduling
Engine control applications typically include computational activities consisting of periodic tasks, activated by timers, and engine-triggered tasks, activated at specific angular positions of the crankshaft. Such tasks are typically managed by a OSEK-compliant real-time kernel using a fixed-priority scheduler, as specified in the AUTOSAR standard adopted by most automotive industries. Recent theoretical results, however, have highlighted significant limitations of fixed-priority scheduling in managing engine-triggered tasks that could be solved by a dynamic scheduling policy. To address this issue, this paper proposes a new kernel implementation within the ERIKA Enterprise operating system, providing EDF scheduling for both periodic and engine-triggered tasks. The proposed kernel has been conceived to have an API similar to the AUTOSAR/OSEK standard one, limiting the effort needed to use the new kernel with an existing legacy application. The proposed kernel implementation is discussed and evaluated in terms of run-time overhead and footprint. In addition, a simulation framework is presented, showing a powerful environment for studying the execution of tasks under the proposed kernel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trading Cores for Memory Bandwidth in Real-Time Systems A Kernel for Energy-Neutral Real-Time Systems with Mixed Criticalities Poster Abstract: Scheduling Multi-Threaded Tasks to Reduce Intra-Task Cache Contention Demo Abstract: Predictable SoC Architecture Based on COTS Multi-Core TaskShuffler: A Schedule Randomization Protocol for Obfuscation against Timing Inference Attacks in Real-Time Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1