VisMole:基于体素的分子表征,用于分子性质预测

Qiang Tong, Jiahao Shen, Xiulei Liu
{"title":"VisMole:基于体素的分子表征,用于分子性质预测","authors":"Qiang Tong, Jiahao Shen, Xiulei Liu","doi":"10.1117/12.2667694","DOIUrl":null,"url":null,"abstract":"To make computers understand the molecules, the first and important thing is to represent molecules in a proper way, which will affect the efficiency of chemistry tasks like property prediction and molecular design. In this work, we introduce a molecular representation for noncrystalline small molecules based on the theory of quantum physics. This representation captures the microscopic spatial structure of the molecule, which ensures it reflects more visual perception information about the molecule. We use Drug3DNet as our baseline and test the efficiency of our representation. By comparing with several other representations, we prove that our representation performs better on most of the properties.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"412 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VisMole: a molecular representation based on voxel for molecular property prediction\",\"authors\":\"Qiang Tong, Jiahao Shen, Xiulei Liu\",\"doi\":\"10.1117/12.2667694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To make computers understand the molecules, the first and important thing is to represent molecules in a proper way, which will affect the efficiency of chemistry tasks like property prediction and molecular design. In this work, we introduce a molecular representation for noncrystalline small molecules based on the theory of quantum physics. This representation captures the microscopic spatial structure of the molecule, which ensures it reflects more visual perception information about the molecule. We use Drug3DNet as our baseline and test the efficiency of our representation. By comparing with several other representations, we prove that our representation performs better on most of the properties.\",\"PeriodicalId\":345723,\"journal\":{\"name\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"volume\":\"412 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2667694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要使计算机理解分子,首先也是最重要的是用合适的方式表示分子,这将影响到诸如性质预测和分子设计等化学任务的效率。在这项工作中,我们介绍了基于量子物理理论的非结晶小分子的分子表示。这种表示捕获了分子的微观空间结构,这确保它反映了更多关于分子的视觉感知信息。我们使用Drug3DNet作为基线,并测试我们表示的效率。通过与其他几种表示的比较,我们证明了我们的表示在大多数性质上表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VisMole: a molecular representation based on voxel for molecular property prediction
To make computers understand the molecules, the first and important thing is to represent molecules in a proper way, which will affect the efficiency of chemistry tasks like property prediction and molecular design. In this work, we introduce a molecular representation for noncrystalline small molecules based on the theory of quantum physics. This representation captures the microscopic spatial structure of the molecule, which ensures it reflects more visual perception information about the molecule. We use Drug3DNet as our baseline and test the efficiency of our representation. By comparing with several other representations, we prove that our representation performs better on most of the properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and application of rhythmic gymnastics auxiliary training system based on Kinect Long-term stock price forecast based on PSO-informer model Research on numerical simulation of deep seabed blowout and oil spill range FL-Lightgbm prediction method of unbalanced small sample anti-breast cancer drugs Learning anisotropy and asymmetry geometric features for medical image segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1