傅里叶和拉普拉斯变换用于神经网络电池建模的预处理

J. Hu, Changhong Liu, Xuguang Li
{"title":"傅里叶和拉普拉斯变换用于神经网络电池建模的预处理","authors":"J. Hu, Changhong Liu, Xuguang Li","doi":"10.1109/IPEMC.2012.6258892","DOIUrl":null,"url":null,"abstract":"To solve the large storage capacity in neural network battery modeling, an input pretreatment, based on Fourier or Laplace transform, is proposed. As simulation shows, the improved battery model gets a better precision and consumes a smaller storage capacity. This method can also be used in SOC estimation if farther experiments are conducted.","PeriodicalId":236136,"journal":{"name":"Proceedings of The 7th International Power Electronics and Motion Control Conference","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier and laplace transform used in pretreatment for neural network battery modeling\",\"authors\":\"J. Hu, Changhong Liu, Xuguang Li\",\"doi\":\"10.1109/IPEMC.2012.6258892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the large storage capacity in neural network battery modeling, an input pretreatment, based on Fourier or Laplace transform, is proposed. As simulation shows, the improved battery model gets a better precision and consumes a smaller storage capacity. This method can also be used in SOC estimation if farther experiments are conducted.\",\"PeriodicalId\":236136,\"journal\":{\"name\":\"Proceedings of The 7th International Power Electronics and Motion Control Conference\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 7th International Power Electronics and Motion Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPEMC.2012.6258892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 7th International Power Electronics and Motion Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEMC.2012.6258892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对神经网络电池建模中存储容量大的问题,提出了一种基于傅里叶变换或拉普拉斯变换的输入预处理方法。仿真结果表明,改进后的电池模型具有更高的精度和更小的存储容量。在进一步的实验中,该方法也可用于SOC的估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fourier and laplace transform used in pretreatment for neural network battery modeling
To solve the large storage capacity in neural network battery modeling, an input pretreatment, based on Fourier or Laplace transform, is proposed. As simulation shows, the improved battery model gets a better precision and consumes a smaller storage capacity. This method can also be used in SOC estimation if farther experiments are conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tri-state boost PFC converter with high input power factor Application and performance of a multilevel cascaded H-bridge converter on Static Var Generator Optimum sizing of non-grid-connected wind power system incorporating battery-exchange stations Real time selective harmonic minimization for multilevel inverters using genetic algorithm and artificial neural network angle generation Stability analysis of matrix converter with constant power loads and LC input filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1