基于支持向量机的高速链路眼图高度建模

R. Trinchero, F. Canavero
{"title":"基于支持向量机的高速链路眼图高度建模","authors":"R. Trinchero, F. Canavero","doi":"10.1109/SAPIW.2018.8401679","DOIUrl":null,"url":null,"abstract":"This paper presents a preliminary application of the support vector machine regression to the modeling of the eye diagram heights in high speed links for design and optimization purposes. The support vector machine regression is applied to generate a compact surrogate model of the eye diagram heights at a specific node of the link from a set of randomly selected training samples. The surrogate can be suitably adopted both for design optimization and for stochastic analysis. The feasibility and accuracy of the surrogate model calculated via the support vector machine regression are investigated on a realistic high-speed communication channel.","PeriodicalId":423850,"journal":{"name":"2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Modeling of eye diagram height in high-speed links via support vector machine\",\"authors\":\"R. Trinchero, F. Canavero\",\"doi\":\"10.1109/SAPIW.2018.8401679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a preliminary application of the support vector machine regression to the modeling of the eye diagram heights in high speed links for design and optimization purposes. The support vector machine regression is applied to generate a compact surrogate model of the eye diagram heights at a specific node of the link from a set of randomly selected training samples. The surrogate can be suitably adopted both for design optimization and for stochastic analysis. The feasibility and accuracy of the surrogate model calculated via the support vector machine regression are investigated on a realistic high-speed communication channel.\",\"PeriodicalId\":423850,\"journal\":{\"name\":\"2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAPIW.2018.8401679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAPIW.2018.8401679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文介绍了支持向量机回归在高速线路眼图高度建模中的初步应用,用于设计和优化。应用支持向量机回归从一组随机选择的训练样本中生成链路特定节点眼图高度的紧凑代理模型。该方法既适用于设计优化,也适用于随机分析。在一个实际的高速通信信道上,研究了基于支持向量机回归计算的代理模型的可行性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of eye diagram height in high-speed links via support vector machine
This paper presents a preliminary application of the support vector machine regression to the modeling of the eye diagram heights in high speed links for design and optimization purposes. The support vector machine regression is applied to generate a compact surrogate model of the eye diagram heights at a specific node of the link from a set of randomly selected training samples. The surrogate can be suitably adopted both for design optimization and for stochastic analysis. The feasibility and accuracy of the surrogate model calculated via the support vector machine regression are investigated on a realistic high-speed communication channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circuit synthesis of blackbox macromodels from S-parameter representation A machine learning methodology for inferring network S-parameters in the presence of variability Optimization of on-package decoupling capacitors considering system variables Eye diagram estimation and equalizer design method for PAM4 Powering a remote board and sensors in an extreme environment — An optical solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1