{"title":"结合统计监测和可预测恢复进行自我管理","authors":"A. Fox, Emre Kıcıman, D. Patterson","doi":"10.1145/1075405.1075415","DOIUrl":null,"url":null,"abstract":"Complex distributed Internet services form the basis not only of e-commerce but increasingly of mission-critical network-based applications. What is new is that the workload and internal architecture of three-tier enterprise applications presents the opportunity for a new approach to keeping them running in the face of many common recoverable failures. The core of the approach is anomaly detection and localization based on statistical machine learning techniques. Unlike previous approaches, we propose anomaly detection and pattern mining not only for operational statistics such as mean response time, but also for structural behaviors of the system---what parts of the system, in what combinations, are being exercised in response to different kinds of external stimuli. In addition, rather than building baseline models a priori, we extract them by observing the behavior of the system over a short period of time during normal operation. We explain the necessary underlying assumptions and why they can be realized by systems research, report on some early successes using the approach, describe benefits of the approach that make it competitive as a path toward self-managing systems, and outline some research challenges. Our hope is that this approach will enable \"new science\" in the design of self-managing systems by allowing the rapid and widespread application of statistical learning theory techniques (SLT) to problems of system dependability.","PeriodicalId":326554,"journal":{"name":"Workshop on Self-Healing Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Combining statistical monitoring and predictable recovery for self-management\",\"authors\":\"A. Fox, Emre Kıcıman, D. Patterson\",\"doi\":\"10.1145/1075405.1075415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex distributed Internet services form the basis not only of e-commerce but increasingly of mission-critical network-based applications. What is new is that the workload and internal architecture of three-tier enterprise applications presents the opportunity for a new approach to keeping them running in the face of many common recoverable failures. The core of the approach is anomaly detection and localization based on statistical machine learning techniques. Unlike previous approaches, we propose anomaly detection and pattern mining not only for operational statistics such as mean response time, but also for structural behaviors of the system---what parts of the system, in what combinations, are being exercised in response to different kinds of external stimuli. In addition, rather than building baseline models a priori, we extract them by observing the behavior of the system over a short period of time during normal operation. We explain the necessary underlying assumptions and why they can be realized by systems research, report on some early successes using the approach, describe benefits of the approach that make it competitive as a path toward self-managing systems, and outline some research challenges. Our hope is that this approach will enable \\\"new science\\\" in the design of self-managing systems by allowing the rapid and widespread application of statistical learning theory techniques (SLT) to problems of system dependability.\",\"PeriodicalId\":326554,\"journal\":{\"name\":\"Workshop on Self-Healing Systems\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Self-Healing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1075405.1075415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Self-Healing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1075405.1075415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining statistical monitoring and predictable recovery for self-management
Complex distributed Internet services form the basis not only of e-commerce but increasingly of mission-critical network-based applications. What is new is that the workload and internal architecture of three-tier enterprise applications presents the opportunity for a new approach to keeping them running in the face of many common recoverable failures. The core of the approach is anomaly detection and localization based on statistical machine learning techniques. Unlike previous approaches, we propose anomaly detection and pattern mining not only for operational statistics such as mean response time, but also for structural behaviors of the system---what parts of the system, in what combinations, are being exercised in response to different kinds of external stimuli. In addition, rather than building baseline models a priori, we extract them by observing the behavior of the system over a short period of time during normal operation. We explain the necessary underlying assumptions and why they can be realized by systems research, report on some early successes using the approach, describe benefits of the approach that make it competitive as a path toward self-managing systems, and outline some research challenges. Our hope is that this approach will enable "new science" in the design of self-managing systems by allowing the rapid and widespread application of statistical learning theory techniques (SLT) to problems of system dependability.