结合统计监测和可预测恢复进行自我管理

A. Fox, Emre Kıcıman, D. Patterson
{"title":"结合统计监测和可预测恢复进行自我管理","authors":"A. Fox, Emre Kıcıman, D. Patterson","doi":"10.1145/1075405.1075415","DOIUrl":null,"url":null,"abstract":"Complex distributed Internet services form the basis not only of e-commerce but increasingly of mission-critical network-based applications. What is new is that the workload and internal architecture of three-tier enterprise applications presents the opportunity for a new approach to keeping them running in the face of many common recoverable failures. The core of the approach is anomaly detection and localization based on statistical machine learning techniques. Unlike previous approaches, we propose anomaly detection and pattern mining not only for operational statistics such as mean response time, but also for structural behaviors of the system---what parts of the system, in what combinations, are being exercised in response to different kinds of external stimuli. In addition, rather than building baseline models a priori, we extract them by observing the behavior of the system over a short period of time during normal operation. We explain the necessary underlying assumptions and why they can be realized by systems research, report on some early successes using the approach, describe benefits of the approach that make it competitive as a path toward self-managing systems, and outline some research challenges. Our hope is that this approach will enable \"new science\" in the design of self-managing systems by allowing the rapid and widespread application of statistical learning theory techniques (SLT) to problems of system dependability.","PeriodicalId":326554,"journal":{"name":"Workshop on Self-Healing Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Combining statistical monitoring and predictable recovery for self-management\",\"authors\":\"A. Fox, Emre Kıcıman, D. Patterson\",\"doi\":\"10.1145/1075405.1075415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex distributed Internet services form the basis not only of e-commerce but increasingly of mission-critical network-based applications. What is new is that the workload and internal architecture of three-tier enterprise applications presents the opportunity for a new approach to keeping them running in the face of many common recoverable failures. The core of the approach is anomaly detection and localization based on statistical machine learning techniques. Unlike previous approaches, we propose anomaly detection and pattern mining not only for operational statistics such as mean response time, but also for structural behaviors of the system---what parts of the system, in what combinations, are being exercised in response to different kinds of external stimuli. In addition, rather than building baseline models a priori, we extract them by observing the behavior of the system over a short period of time during normal operation. We explain the necessary underlying assumptions and why they can be realized by systems research, report on some early successes using the approach, describe benefits of the approach that make it competitive as a path toward self-managing systems, and outline some research challenges. Our hope is that this approach will enable \\\"new science\\\" in the design of self-managing systems by allowing the rapid and widespread application of statistical learning theory techniques (SLT) to problems of system dependability.\",\"PeriodicalId\":326554,\"journal\":{\"name\":\"Workshop on Self-Healing Systems\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Self-Healing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1075405.1075415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Self-Healing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1075405.1075415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

复杂的分布式Internet服务不仅构成了电子商务的基础,而且日益成为基于网络的关键任务应用程序的基础。新的是,三层企业应用程序的工作负载和内部体系结构提供了一种新方法,可以在面对许多常见的可恢复故障时保持它们的运行。该方法的核心是基于统计机器学习技术的异常检测和定位。与以前的方法不同,我们提出的异常检测和模式挖掘不仅适用于平均响应时间等操作统计数据,而且适用于系统的结构行为-系统的哪些部分,以何种组合,正在响应不同类型的外部刺激。此外,我们不是先验地构建基线模型,而是通过在正常运行的短时间内观察系统的行为来提取它们。我们解释了必要的潜在假设,以及为什么它们可以通过系统研究来实现,报告了使用该方法的一些早期成功案例,描述了该方法的好处,使其成为通往自我管理系统的竞争之路,并概述了一些研究挑战。我们的希望是,通过允许统计学习理论技术(SLT)快速和广泛地应用于系统可靠性问题,这种方法将使自我管理系统设计中的“新科学”成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining statistical monitoring and predictable recovery for self-management
Complex distributed Internet services form the basis not only of e-commerce but increasingly of mission-critical network-based applications. What is new is that the workload and internal architecture of three-tier enterprise applications presents the opportunity for a new approach to keeping them running in the face of many common recoverable failures. The core of the approach is anomaly detection and localization based on statistical machine learning techniques. Unlike previous approaches, we propose anomaly detection and pattern mining not only for operational statistics such as mean response time, but also for structural behaviors of the system---what parts of the system, in what combinations, are being exercised in response to different kinds of external stimuli. In addition, rather than building baseline models a priori, we extract them by observing the behavior of the system over a short period of time during normal operation. We explain the necessary underlying assumptions and why they can be realized by systems research, report on some early successes using the approach, describe benefits of the approach that make it competitive as a path toward self-managing systems, and outline some research challenges. Our hope is that this approach will enable "new science" in the design of self-managing systems by allowing the rapid and widespread application of statistical learning theory techniques (SLT) to problems of system dependability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A control-based framework for self-managing distributed computing systems Self-healing mechanisms for kernel system compromises Online model-based adaptation for optimizing performance and dependability A planning based approach to failure recovery in distributed systems Patterns of self-management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1