{"title":"针对板几何结构中超高速大气压空气放电的实验研究","authors":"J. Pouvesle, S. Iséni, S. Dozias, É. Robert","doi":"10.1109/PLASMA.2017.8496158","DOIUrl":null,"url":null,"abstract":"In this work, a pin-to-plate reactor operating in air at ambient temperature and pressure is investigated. Driven with a high-voltage (HV) ns pulse generator with sub-ns rise time excitation up to 50 kV, the discharge is ignited within a gap ranging from 0.5 to 25 mm. Although pin-to-plate discharges have been widely studied over the last century, the system offers the advantage to ignite the discharge in the over-voltage regime allowing for minimizing gas heating (at least in the single shot regime) and the production of highly energetic electrons due to the intense electric field (EF). As already shown, the discharge expends in very large and homogeneous volume (up to 20 mm diameter) within the gap. This is of high interest for atmospheric pressure volume treatment concerning either degradation of pollutants, assisted combustion ignition or activation of materials 1.","PeriodicalId":145705,"journal":{"name":"2017 IEEE International Conference on Plasma Science (ICOPS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental Study Of An Ultra-Fast Atmospheric Pressure Air Discharge In A Pin-To-Plate Geometry\",\"authors\":\"J. Pouvesle, S. Iséni, S. Dozias, É. Robert\",\"doi\":\"10.1109/PLASMA.2017.8496158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a pin-to-plate reactor operating in air at ambient temperature and pressure is investigated. Driven with a high-voltage (HV) ns pulse generator with sub-ns rise time excitation up to 50 kV, the discharge is ignited within a gap ranging from 0.5 to 25 mm. Although pin-to-plate discharges have been widely studied over the last century, the system offers the advantage to ignite the discharge in the over-voltage regime allowing for minimizing gas heating (at least in the single shot regime) and the production of highly energetic electrons due to the intense electric field (EF). As already shown, the discharge expends in very large and homogeneous volume (up to 20 mm diameter) within the gap. This is of high interest for atmospheric pressure volume treatment concerning either degradation of pollutants, assisted combustion ignition or activation of materials 1.\",\"PeriodicalId\":145705,\"journal\":{\"name\":\"2017 IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2017.8496158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2017.8496158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Study Of An Ultra-Fast Atmospheric Pressure Air Discharge In A Pin-To-Plate Geometry
In this work, a pin-to-plate reactor operating in air at ambient temperature and pressure is investigated. Driven with a high-voltage (HV) ns pulse generator with sub-ns rise time excitation up to 50 kV, the discharge is ignited within a gap ranging from 0.5 to 25 mm. Although pin-to-plate discharges have been widely studied over the last century, the system offers the advantage to ignite the discharge in the over-voltage regime allowing for minimizing gas heating (at least in the single shot regime) and the production of highly energetic electrons due to the intense electric field (EF). As already shown, the discharge expends in very large and homogeneous volume (up to 20 mm diameter) within the gap. This is of high interest for atmospheric pressure volume treatment concerning either degradation of pollutants, assisted combustion ignition or activation of materials 1.