基于关系映射和网络科学的知识仿真

S. Halladay, Charles A. Milligan
{"title":"基于关系映射和网络科学的知识仿真","authors":"S. Halladay, Charles A. Milligan","doi":"10.1109/HICSS.2006.245","DOIUrl":null,"url":null,"abstract":"Knowledge representation began with logic and ontology from Aristotle and focuses on managing information via structured metadata about relationships. Tools evolved employing subset approximation, categorization, and computational analysis that enable human understanding and mathematical manipulation. System fidelity requires that relationship richness be kept proportional to information size and complexity. This paper introduces knowledge simulation (Ks) resulting in knowledge inference (Ki). Ks is based on network science principles rather than structured metadata. Ki suggests knowledge potential by relaxing requirements for human understanding but increasing capability for human interaction in directing computational analysis.","PeriodicalId":432250,"journal":{"name":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Knowledge Simulation via Relationship Mapping and Network Science\",\"authors\":\"S. Halladay, Charles A. Milligan\",\"doi\":\"10.1109/HICSS.2006.245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge representation began with logic and ontology from Aristotle and focuses on managing information via structured metadata about relationships. Tools evolved employing subset approximation, categorization, and computational analysis that enable human understanding and mathematical manipulation. System fidelity requires that relationship richness be kept proportional to information size and complexity. This paper introduces knowledge simulation (Ks) resulting in knowledge inference (Ki). Ks is based on network science principles rather than structured metadata. Ki suggests knowledge potential by relaxing requirements for human understanding but increasing capability for human interaction in directing computational analysis.\",\"PeriodicalId\":432250,\"journal\":{\"name\":\"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HICSS.2006.245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2006.245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

知识表示从亚里士多德的逻辑和本体论开始,重点是通过关于关系的结构化元数据来管理信息。工具的发展采用子集近似、分类和计算分析,使人类的理解和数学操作。系统保真度要求关系丰富度与信息大小和复杂性成正比。本文介绍了知识模拟(Ks)和知识推理(Ki)。Ks基于网络科学原理,而不是结构化元数据。Ki建议通过放松对人类理解的要求,但增加人类在指导计算分析方面的互动能力来实现知识潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge Simulation via Relationship Mapping and Network Science
Knowledge representation began with logic and ontology from Aristotle and focuses on managing information via structured metadata about relationships. Tools evolved employing subset approximation, categorization, and computational analysis that enable human understanding and mathematical manipulation. System fidelity requires that relationship richness be kept proportional to information size and complexity. This paper introduces knowledge simulation (Ks) resulting in knowledge inference (Ki). Ks is based on network science principles rather than structured metadata. Ki suggests knowledge potential by relaxing requirements for human understanding but increasing capability for human interaction in directing computational analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supporting the Module Sequencing Decision in the ERP Implementation Process Flying Sinks: Heuristics for Movement in Sensor Networks Enterprise Architecture: A Social Network Perspective Document Clustering with Semantic Analysis Knowledge Extraction from Prostate Cancer Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1