基于图像取证技术的语音障碍检测

Juraj Pálfy, Sakhia Darjaa, Jiri Pospíchal
{"title":"基于图像取证技术的语音障碍检测","authors":"Juraj Pálfy, Sakhia Darjaa, Jiri Pospíchal","doi":"10.1109/ASRU.2013.6707712","DOIUrl":null,"url":null,"abstract":"As speech recognition has become popular, the importance of dysfluency detection increased considerably. Once a dysfluent event in spontaneous speech is identified, the speech recognition performance could be enhanced by eliminating its negative effect. Most existing techniques to detect such dysfluent events are based on statistical models. Sparse regularity of dysfluent events and complexity to describe such events in a speech recognition system makes its recognition rigorous. These problems are addressed by our algorithm inspired by image forensics. This paper suggests our algorithm developed to extract novel features of complex dysfluencies. The common steps of classifier design were used to statistically evaluate the proposed features of complex dysfluencies in spectral and cepstral domains. Support vector machines perform objective assessment of MFCC features, MFCC based derived features, PCA based derived features and kernel PCA based derived features of complex dysfluencies, where our derived features increased the performance by 46% opposite to MFCC.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dysfluent speech detection by image forensics techniques\",\"authors\":\"Juraj Pálfy, Sakhia Darjaa, Jiri Pospíchal\",\"doi\":\"10.1109/ASRU.2013.6707712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As speech recognition has become popular, the importance of dysfluency detection increased considerably. Once a dysfluent event in spontaneous speech is identified, the speech recognition performance could be enhanced by eliminating its negative effect. Most existing techniques to detect such dysfluent events are based on statistical models. Sparse regularity of dysfluent events and complexity to describe such events in a speech recognition system makes its recognition rigorous. These problems are addressed by our algorithm inspired by image forensics. This paper suggests our algorithm developed to extract novel features of complex dysfluencies. The common steps of classifier design were used to statistically evaluate the proposed features of complex dysfluencies in spectral and cepstral domains. Support vector machines perform objective assessment of MFCC features, MFCC based derived features, PCA based derived features and kernel PCA based derived features of complex dysfluencies, where our derived features increased the performance by 46% opposite to MFCC.\",\"PeriodicalId\":265258,\"journal\":{\"name\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2013.6707712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着语音识别的普及,语言不流畅检测的重要性大大增加。一旦识别出自发语音中的不流利事件,就可以通过消除其负面影响来提高语音识别性能。大多数现有的检测此类不流畅事件的技术都是基于统计模型的。语音识别系统中异常事件的稀疏规律性和描述异常事件的复杂性使其识别更加严格。我们的算法受到图像取证的启发,解决了这些问题。本文提出该算法用于提取复杂语言障碍的新特征。分类器设计的常见步骤用于统计评估谱域和倒谱域的复杂不流畅特征。支持向量机对复杂不流畅的MFCC特征、基于MFCC的衍生特征、基于PCA的衍生特征和基于核PCA的衍生特征进行客观评估,其中我们的衍生特征比MFCC的性能提高了46%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dysfluent speech detection by image forensics techniques
As speech recognition has become popular, the importance of dysfluency detection increased considerably. Once a dysfluent event in spontaneous speech is identified, the speech recognition performance could be enhanced by eliminating its negative effect. Most existing techniques to detect such dysfluent events are based on statistical models. Sparse regularity of dysfluent events and complexity to describe such events in a speech recognition system makes its recognition rigorous. These problems are addressed by our algorithm inspired by image forensics. This paper suggests our algorithm developed to extract novel features of complex dysfluencies. The common steps of classifier design were used to statistically evaluate the proposed features of complex dysfluencies in spectral and cepstral domains. Support vector machines perform objective assessment of MFCC features, MFCC based derived features, PCA based derived features and kernel PCA based derived features of complex dysfluencies, where our derived features increased the performance by 46% opposite to MFCC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning filter banks within a deep neural network framework Efficient nearly error-less LVCSR decoding based on incremental forward and backward passes Porting concepts from DNNs back to GMMs Discriminative piecewise linear transformation based on deep learning for noise robust automatic speech recognition Acoustic modeling using transform-based phone-cluster adaptive training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1