基于残差密集生成器的生成对抗网络遥感图像超分辨率研究

Rika Sustika, A. B. Suksmono, D. Danudirdjo, K. Wikantika
{"title":"基于残差密集生成器的生成对抗网络遥感图像超分辨率研究","authors":"Rika Sustika, A. B. Suksmono, D. Danudirdjo, K. Wikantika","doi":"10.1109/ICRAMET51080.2020.9298648","DOIUrl":null,"url":null,"abstract":"Improving image resolution, especially spatial resolution, has been one of the most important concerns on remote sensing research communities. An efficient solution for improving spatial resolution is by using algorithm, known as super-resolution (SR). The super-resolution technique that received special attention recently is super-resolution based on deep learning. In this paper, we propose deep learning approach based on generative adversarial network (GAN) for remote sensing images super resolution. We used residual dense network (RDN) as generator network. Generally, deep learning with residual dense network (RDN) gives high performance on classical (objective) evaluation metrics meanwhile generative adversarial network (GAN) based approach shows a high perceptual quality. Experiment results show that combination of residual dense network generator with generative adversarial network training is found to be effective. Our proposed method outperforms the baseline method in terms of objective and perceptual quality evaluation metrics.","PeriodicalId":228482,"journal":{"name":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generative Adversarial Network with Residual Dense Generator for Remote Sensing Image Super Resolution\",\"authors\":\"Rika Sustika, A. B. Suksmono, D. Danudirdjo, K. Wikantika\",\"doi\":\"10.1109/ICRAMET51080.2020.9298648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving image resolution, especially spatial resolution, has been one of the most important concerns on remote sensing research communities. An efficient solution for improving spatial resolution is by using algorithm, known as super-resolution (SR). The super-resolution technique that received special attention recently is super-resolution based on deep learning. In this paper, we propose deep learning approach based on generative adversarial network (GAN) for remote sensing images super resolution. We used residual dense network (RDN) as generator network. Generally, deep learning with residual dense network (RDN) gives high performance on classical (objective) evaluation metrics meanwhile generative adversarial network (GAN) based approach shows a high perceptual quality. Experiment results show that combination of residual dense network generator with generative adversarial network training is found to be effective. Our proposed method outperforms the baseline method in terms of objective and perceptual quality evaluation metrics.\",\"PeriodicalId\":228482,\"journal\":{\"name\":\"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMET51080.2020.9298648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET51080.2020.9298648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提高图像分辨率,特别是空间分辨率,一直是遥感研究界关注的焦点之一。一种提高空间分辨率的有效方法是使用超分辨率算法。近年来备受关注的超分辨率技术是基于深度学习的超分辨率技术。在本文中,我们提出了基于生成对抗网络(GAN)的遥感图像超分辨率深度学习方法。我们使用残差密集网络(RDN)作为生成网络。一般来说,残差密集网络(RDN)深度学习在经典(客观)评价指标上表现优异,而基于生成对抗网络(GAN)的深度学习则表现出较高的感知质量。实验结果表明,残差密集网络生成器与生成式对抗网络训练相结合是有效的。我们提出的方法在客观和感知质量评价指标方面优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative Adversarial Network with Residual Dense Generator for Remote Sensing Image Super Resolution
Improving image resolution, especially spatial resolution, has been one of the most important concerns on remote sensing research communities. An efficient solution for improving spatial resolution is by using algorithm, known as super-resolution (SR). The super-resolution technique that received special attention recently is super-resolution based on deep learning. In this paper, we propose deep learning approach based on generative adversarial network (GAN) for remote sensing images super resolution. We used residual dense network (RDN) as generator network. Generally, deep learning with residual dense network (RDN) gives high performance on classical (objective) evaluation metrics meanwhile generative adversarial network (GAN) based approach shows a high perceptual quality. Experiment results show that combination of residual dense network generator with generative adversarial network training is found to be effective. Our proposed method outperforms the baseline method in terms of objective and perceptual quality evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning for Dengue Fever Event Detection Using Online News Screen Printed Electrochemical Sensor for Ascorbic Acid Detection Based on Nafion/Ionic Liquids/Graphene Composite on Carbon Electrodes Implementation Array-Slotted Miliwires in Artificial Dielectric Material on Waveguide Filters Te10 Mode Path Loss Model of the Maritime Wireless Communication in the Seas of Indonesia Modeling of Low-Resolution Face Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1