{"title":"一种多用途应力传感器传递技术","authors":"C. Dou, Heng Yang, Y. Wu, X. Li, Y. Wang","doi":"10.1109/NEMS.2013.6559876","DOIUrl":null,"url":null,"abstract":"This paper reports a transfer process of silicon stress and Pt temperature sensors for versatile requirements. Based on a 3μm thick BCB adhesive layer, a 1.6 mm × 1.6 mm donor chip with stress and temperature sensors, which are fabricated on the silicon-on-insulator wafer using standard MEMS process, is bonded on a target wafer. After the bottom silicon layer and the insulator SiO2 layer of the donor chip are etched by XeF2 gas and RIE technique, only about 0.2μm thick top sensor layer and 0.7μm thick aluminum layer used as conducting wires and pads are transferred onto the target wafer for the measurement of its in-plane stresses. Through the transfer process of stress and temperature sensors, the in-plane stresses of the target wafer caused by the fabrication processes or the package processes can be measured.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transfer technique of stress sensors for versatile applications\",\"authors\":\"C. Dou, Heng Yang, Y. Wu, X. Li, Y. Wang\",\"doi\":\"10.1109/NEMS.2013.6559876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a transfer process of silicon stress and Pt temperature sensors for versatile requirements. Based on a 3μm thick BCB adhesive layer, a 1.6 mm × 1.6 mm donor chip with stress and temperature sensors, which are fabricated on the silicon-on-insulator wafer using standard MEMS process, is bonded on a target wafer. After the bottom silicon layer and the insulator SiO2 layer of the donor chip are etched by XeF2 gas and RIE technique, only about 0.2μm thick top sensor layer and 0.7μm thick aluminum layer used as conducting wires and pads are transferred onto the target wafer for the measurement of its in-plane stresses. Through the transfer process of stress and temperature sensors, the in-plane stresses of the target wafer caused by the fabrication processes or the package processes can be measured.\",\"PeriodicalId\":308928,\"journal\":{\"name\":\"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2013.6559876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文报道了一种满足多用途要求的硅应力和铂温度传感器的传递过程。在3μm厚的BCB粘接层的基础上,采用标准MEMS工艺在绝缘体硅晶圆上制备了带有应力和温度传感器的1.6 mm × 1.6 mm给体芯片,并将其粘接在目标晶圆上。利用XeF2气体和RIE技术蚀刻给晶片的底部硅层和绝缘子SiO2层后,仅将约0.2μm厚的顶部传感器层和0.7μm厚的用作导线和衬垫的铝层转移到目标晶片上,用于测量其面内应力。通过应力和温度传感器的传递过程,可以测量由制造过程或封装过程引起的目标晶圆的面内应力。
A transfer technique of stress sensors for versatile applications
This paper reports a transfer process of silicon stress and Pt temperature sensors for versatile requirements. Based on a 3μm thick BCB adhesive layer, a 1.6 mm × 1.6 mm donor chip with stress and temperature sensors, which are fabricated on the silicon-on-insulator wafer using standard MEMS process, is bonded on a target wafer. After the bottom silicon layer and the insulator SiO2 layer of the donor chip are etched by XeF2 gas and RIE technique, only about 0.2μm thick top sensor layer and 0.7μm thick aluminum layer used as conducting wires and pads are transferred onto the target wafer for the measurement of its in-plane stresses. Through the transfer process of stress and temperature sensors, the in-plane stresses of the target wafer caused by the fabrication processes or the package processes can be measured.