三坐标测量机上多任务测量的人工智能检测路径管理:神经网络技术的应用

C.G. Lu, D. Morton, P. Myler, M. H. Wu
{"title":"三坐标测量机上多任务测量的人工智能检测路径管理:神经网络技术的应用","authors":"C.G. Lu, D. Morton, P. Myler, M. H. Wu","doi":"10.1109/IEMC.1995.524608","DOIUrl":null,"url":null,"abstract":"The use of a co-ordinate measuring machine (CMM) is widely spread throughout the manufacturing industry. In spite of this, inspection planning for a CMM, especially by using artificial intelligent (AI) techniques, is not well developed. This paper presents an approach of using an artificial neural network technique to carry out the inspection path management for a CMM, especially for multi-component inspection. This path planning system applies genetic algorithm theory to establish an optimiser; and an artificial neural network is developed to carry out the inspection task pattern recognition and the self-learning function.","PeriodicalId":231067,"journal":{"name":"Proceedings for Operating Research and the Management Sciences","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An artificial intelligent (AI) inspection path management for multiple tasks measurement on co-ordinate measuring machine (CMM): an application of neural network technology\",\"authors\":\"C.G. Lu, D. Morton, P. Myler, M. H. Wu\",\"doi\":\"10.1109/IEMC.1995.524608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of a co-ordinate measuring machine (CMM) is widely spread throughout the manufacturing industry. In spite of this, inspection planning for a CMM, especially by using artificial intelligent (AI) techniques, is not well developed. This paper presents an approach of using an artificial neural network technique to carry out the inspection path management for a CMM, especially for multi-component inspection. This path planning system applies genetic algorithm theory to establish an optimiser; and an artificial neural network is developed to carry out the inspection task pattern recognition and the self-learning function.\",\"PeriodicalId\":231067,\"journal\":{\"name\":\"Proceedings for Operating Research and the Management Sciences\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings for Operating Research and the Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMC.1995.524608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings for Operating Research and the Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMC.1995.524608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

三坐标测量机(CMM)的使用在整个制造业中广泛应用。尽管如此,三坐标测量机的检测计划,特别是使用人工智能(AI)技术,还没有得到很好的发展。本文提出了一种利用人工神经网络技术对三坐标测量机进行检测路径管理的方法,特别是多部件检测。该路径规划系统应用遗传算法理论建立了优化器;并开发了一种人工神经网络来实现检测任务模式识别和自学习功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An artificial intelligent (AI) inspection path management for multiple tasks measurement on co-ordinate measuring machine (CMM): an application of neural network technology
The use of a co-ordinate measuring machine (CMM) is widely spread throughout the manufacturing industry. In spite of this, inspection planning for a CMM, especially by using artificial intelligent (AI) techniques, is not well developed. This paper presents an approach of using an artificial neural network technique to carry out the inspection path management for a CMM, especially for multi-component inspection. This path planning system applies genetic algorithm theory to establish an optimiser; and an artificial neural network is developed to carry out the inspection task pattern recognition and the self-learning function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quality issues in database reverse engineering: an overview Managing R&D projects: a systemic approach Application of hierarchy multistage-multiobjective approach to network design: case of express road Productivity increase in process and device simulation throughput for integrated circuit manufacturing companies Energy conservation through building management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1