基于呼叫细节记录的变更点检测

Huiqi Zhang, R. Dantu, João W. Cangussu
{"title":"基于呼叫细节记录的变更点检测","authors":"Huiqi Zhang, R. Dantu, João W. Cangussu","doi":"10.1109/ISI.2009.5137271","DOIUrl":null,"url":null,"abstract":"In this paper we propose a method for combining wavelet denoising and sequential approach for detecting change points on mobile phone based on detailed call records. The Minmax method is used to estimate the thresholds of frequency and call duration for denoising. This work is useful to enhance homeland security, detecting unwanted calls (e.g., spam) and commercial purposes. For validation of our results, we randomly choose actual call logs of 20 users from 100 users collected at MIT by the Reality Mining Project group for a period of 8 months. Simulation data is also used to validate the results. The experimental results show that our model achieves good performance with high accuracy.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Change point detection based on call detail records\",\"authors\":\"Huiqi Zhang, R. Dantu, João W. Cangussu\",\"doi\":\"10.1109/ISI.2009.5137271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a method for combining wavelet denoising and sequential approach for detecting change points on mobile phone based on detailed call records. The Minmax method is used to estimate the thresholds of frequency and call duration for denoising. This work is useful to enhance homeland security, detecting unwanted calls (e.g., spam) and commercial purposes. For validation of our results, we randomly choose actual call logs of 20 users from 100 users collected at MIT by the Reality Mining Project group for a period of 8 months. Simulation data is also used to validate the results. The experimental results show that our model achieves good performance with high accuracy.\",\"PeriodicalId\":210911,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2009.5137271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种结合小波去噪和序列法的基于详细通话记录的手机变化点检测方法。使用最小值法估计频率阈值和呼叫持续时间阈值进行去噪。这项工作有助于加强国土安全,检测不受欢迎的电话(如垃圾邮件)和商业目的。为了验证我们的结果,我们从现实挖掘项目组在MIT收集的100个用户中随机选择了20个用户的实际通话记录,时间为8个月。仿真数据也用于验证结果。实验结果表明,该模型具有良好的性能和较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Change point detection based on call detail records
In this paper we propose a method for combining wavelet denoising and sequential approach for detecting change points on mobile phone based on detailed call records. The Minmax method is used to estimate the thresholds of frequency and call duration for denoising. This work is useful to enhance homeland security, detecting unwanted calls (e.g., spam) and commercial purposes. For validation of our results, we randomly choose actual call logs of 20 users from 100 users collected at MIT by the Reality Mining Project group for a period of 8 months. Simulation data is also used to validate the results. The experimental results show that our model achieves good performance with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social network classification incorporating link type values Weaving ontologies to support digital forensic analysis Building a better password: The role of cognitive load in information security training Web opinions analysis with scalable distance-based clustering A Higher Order Collective Classifier for detecting and classifying network events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1