{"title":"预测日内交易量和交易量百分比","authors":"V. Satish, Abhay Saxena, Max Palmer","doi":"10.3905/jot.2018.13.4.107","DOIUrl":null,"url":null,"abstract":"This article discusses recent techniques and results in the area of forecasting intraday volume and intraday volume percentages. By exploring ways to predict volume, the authors seek to improve the performance of trading algorithms, many of which depend upon the volume that will trade while the order is active. Traditionally, algorithms use historical averages to predict volume over the lifetime of an order. The authors show that improving the prediction of volume boosts the performance of algorithms.","PeriodicalId":254660,"journal":{"name":"The Journal of Trading","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Predicting Intraday Trading Volume and Volume Percentages\",\"authors\":\"V. Satish, Abhay Saxena, Max Palmer\",\"doi\":\"10.3905/jot.2018.13.4.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discusses recent techniques and results in the area of forecasting intraday volume and intraday volume percentages. By exploring ways to predict volume, the authors seek to improve the performance of trading algorithms, many of which depend upon the volume that will trade while the order is active. Traditionally, algorithms use historical averages to predict volume over the lifetime of an order. The authors show that improving the prediction of volume boosts the performance of algorithms.\",\"PeriodicalId\":254660,\"journal\":{\"name\":\"The Journal of Trading\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Trading\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/jot.2018.13.4.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Trading","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jot.2018.13.4.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Intraday Trading Volume and Volume Percentages
This article discusses recent techniques and results in the area of forecasting intraday volume and intraday volume percentages. By exploring ways to predict volume, the authors seek to improve the performance of trading algorithms, many of which depend upon the volume that will trade while the order is active. Traditionally, algorithms use historical averages to predict volume over the lifetime of an order. The authors show that improving the prediction of volume boosts the performance of algorithms.