衰落MAC下相关信源联合信路编码的DQLC优化

Pedro Suárez-Casal, Ó. Fresnedo, L. Castedo
{"title":"衰落MAC下相关信源联合信路编码的DQLC优化","authors":"Pedro Suárez-Casal, Ó. Fresnedo, L. Castedo","doi":"10.23919/EUSIPCO.2018.8553256","DOIUrl":null,"url":null,"abstract":"Distributed Quantizer Linear Coding (DQLC) is a joint source-channel coding scheme that encodes and transmits distributed Gaussian sources over a MAC under severe delay constraints, providing significant gains when compared to uncoded transmissions. DQLC, however, relies on the appropriate optimization of its parameters depending on source correlation, channel state and noise variance. In this work, we propose a parameter optimization strategy that relies on the lattice structure of the mapping, reduces the number of parameters to estimate, and exhibits lower computational complexity.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"DQLC Optimization for Joint Source Channel Coding of Correlated Sources over Fading MAC\",\"authors\":\"Pedro Suárez-Casal, Ó. Fresnedo, L. Castedo\",\"doi\":\"10.23919/EUSIPCO.2018.8553256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed Quantizer Linear Coding (DQLC) is a joint source-channel coding scheme that encodes and transmits distributed Gaussian sources over a MAC under severe delay constraints, providing significant gains when compared to uncoded transmissions. DQLC, however, relies on the appropriate optimization of its parameters depending on source correlation, channel state and noise variance. In this work, we propose a parameter optimization strategy that relies on the lattice structure of the mapping, reduces the number of parameters to estimate, and exhibits lower computational complexity.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

分布式量化线性编码(DQLC)是一种联合源信道编码方案,它在严格的延迟限制下在MAC上编码和传输分布式高斯源,与未编码传输相比,提供了显著的增益。然而,DQLC依赖于根据源相关、信道状态和噪声方差对其参数进行适当的优化。在这项工作中,我们提出了一种参数优化策略,该策略依赖于映射的晶格结构,减少了需要估计的参数数量,并且具有较低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DQLC Optimization for Joint Source Channel Coding of Correlated Sources over Fading MAC
Distributed Quantizer Linear Coding (DQLC) is a joint source-channel coding scheme that encodes and transmits distributed Gaussian sources over a MAC under severe delay constraints, providing significant gains when compared to uncoded transmissions. DQLC, however, relies on the appropriate optimization of its parameters depending on source correlation, channel state and noise variance. In this work, we propose a parameter optimization strategy that relies on the lattice structure of the mapping, reduces the number of parameters to estimate, and exhibits lower computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1