{"title":"sCO2布雷顿循环换热器热瞬态分析","authors":"A. Moisseytsev, J. Sienicki","doi":"10.1115/gt2019-90374","DOIUrl":null,"url":null,"abstract":"\n The design of heat exchangers for use in a supercritical carbon dioxide (sCO2) Brayton cycle power converter must provide for acceptable performance for duty cycle events encompassing anticipated transients and postulated accidents. This paper presents the results of a comprehensive analysis of thermal transients for sCO2 cycle heat exchangers, with emphasis on the sodium-to-CO2 heat addition heat exchanger. A range of transients, from normal operation to severe accidents, were simulated with the coupled PDC and SAS4A/SASSYS-1 system level dynamic analysis computer codes. For each transient, the calculated change in the heat exchanger wall temperature is determined as a measure of the thermal loading.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Analysis of Thermal Transients for sCO2 Brayton Cycle Heat Exchangers\",\"authors\":\"A. Moisseytsev, J. Sienicki\",\"doi\":\"10.1115/gt2019-90374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The design of heat exchangers for use in a supercritical carbon dioxide (sCO2) Brayton cycle power converter must provide for acceptable performance for duty cycle events encompassing anticipated transients and postulated accidents. This paper presents the results of a comprehensive analysis of thermal transients for sCO2 cycle heat exchangers, with emphasis on the sodium-to-CO2 heat addition heat exchanger. A range of transients, from normal operation to severe accidents, were simulated with the coupled PDC and SAS4A/SASSYS-1 system level dynamic analysis computer codes. For each transient, the calculated change in the heat exchanger wall temperature is determined as a measure of the thermal loading.\",\"PeriodicalId\":412490,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2019-90374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-90374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Thermal Transients for sCO2 Brayton Cycle Heat Exchangers
The design of heat exchangers for use in a supercritical carbon dioxide (sCO2) Brayton cycle power converter must provide for acceptable performance for duty cycle events encompassing anticipated transients and postulated accidents. This paper presents the results of a comprehensive analysis of thermal transients for sCO2 cycle heat exchangers, with emphasis on the sodium-to-CO2 heat addition heat exchanger. A range of transients, from normal operation to severe accidents, were simulated with the coupled PDC and SAS4A/SASSYS-1 system level dynamic analysis computer codes. For each transient, the calculated change in the heat exchanger wall temperature is determined as a measure of the thermal loading.