基于决策树方法的乳腺癌预测绩效评估

D. G, Boyella Mala Konda Reddy
{"title":"基于决策树方法的乳腺癌预测绩效评估","authors":"D. G, Boyella Mala Konda Reddy","doi":"10.33545/27076636.2021.v2.i2a.25","DOIUrl":null,"url":null,"abstract":"This paper investigations choice tree calculation for Breast disease discovery. The effectiveness of choice tree calculation can be broke down dependent on their precision and the quality choice measure utilized. The paper likewise gives a thought of the trait choice measure utilized by different choice tree calculation utilizes data gain and GINI Index as the quality choice measure. In this paper, the expectation of Decision Tree characterization is evaluated using two property trait choice decision measures for Breast Cancer sickness dataset. Choice tree uses separate and vanquish framework for the fundamental learning technique. From the result examination we can reason that the execution of Decision Tree grouping relies upon the trademark quality choice decision measures. Choice Tree is significant since improvement of decision tree classifiers doesn't need any territory learning. The essential objective is to produce a capable assumption show for Breast Cancer sickness expectation returns with high precision.","PeriodicalId":127185,"journal":{"name":"International Journal of Computing, Programming and Database Management","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance measure of breast cancer prediction using decision tree approach\",\"authors\":\"D. G, Boyella Mala Konda Reddy\",\"doi\":\"10.33545/27076636.2021.v2.i2a.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigations choice tree calculation for Breast disease discovery. The effectiveness of choice tree calculation can be broke down dependent on their precision and the quality choice measure utilized. The paper likewise gives a thought of the trait choice measure utilized by different choice tree calculation utilizes data gain and GINI Index as the quality choice measure. In this paper, the expectation of Decision Tree characterization is evaluated using two property trait choice decision measures for Breast Cancer sickness dataset. Choice tree uses separate and vanquish framework for the fundamental learning technique. From the result examination we can reason that the execution of Decision Tree grouping relies upon the trademark quality choice decision measures. Choice Tree is significant since improvement of decision tree classifiers doesn't need any territory learning. The essential objective is to produce a capable assumption show for Breast Cancer sickness expectation returns with high precision.\",\"PeriodicalId\":127185,\"journal\":{\"name\":\"International Journal of Computing, Programming and Database Management\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing, Programming and Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33545/27076636.2021.v2.i2a.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing, Programming and Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33545/27076636.2021.v2.i2a.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了乳腺疾病发现的选择树计算方法。选择树计算的有效性取决于其精度和所使用的质量选择度量。本文同样给出了利用数据增益和GINI指数作为质量选择测度的不同选择树计算所采用的性状选择测度的思路。在本文中,使用乳腺癌疾病数据集的两个属性特征选择决策度量来评估决策树表征的期望。选择树使用分离和征服框架的基本学习技术。从结果检验可以看出,决策树分组的执行依赖于商标质量选择决策措施。因为决策树分类器的改进不需要任何领域学习,所以选择树是很重要的。基本目标是产生一个有能力的假设,显示乳腺癌疾病的期望回报与高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance measure of breast cancer prediction using decision tree approach
This paper investigations choice tree calculation for Breast disease discovery. The effectiveness of choice tree calculation can be broke down dependent on their precision and the quality choice measure utilized. The paper likewise gives a thought of the trait choice measure utilized by different choice tree calculation utilizes data gain and GINI Index as the quality choice measure. In this paper, the expectation of Decision Tree characterization is evaluated using two property trait choice decision measures for Breast Cancer sickness dataset. Choice tree uses separate and vanquish framework for the fundamental learning technique. From the result examination we can reason that the execution of Decision Tree grouping relies upon the trademark quality choice decision measures. Choice Tree is significant since improvement of decision tree classifiers doesn't need any territory learning. The essential objective is to produce a capable assumption show for Breast Cancer sickness expectation returns with high precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive analytics driven time oriented prioritized task assistant under the framework of machine intelligence Review on a rule based approach to align natural language with query language Effect of the internet on library and information services On control of movement of a ship with account of changing of load On approach to optimize manufacturing of field-effect transistors framework a conventional full-bridge converter to increase their integration rate: On influence mismatch-induced stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1