大数据标注交付系统的数据交付安全框架

Yanhong Yang, Hongling He, Daliang Wang, Zhongxiang Ding
{"title":"大数据标注交付系统的数据交付安全框架","authors":"Yanhong Yang, Hongling He, Daliang Wang, Zhongxiang Ding","doi":"10.1109/MASS.2018.00082","DOIUrl":null,"url":null,"abstract":"Big data annotation plays an important role in Artificial Intelligence model training. The proliferation of data annotation tasks has brought the issue of security of the big data delivery. This work identifies the security framework associated with encryption and compression procedures that support data delivery safety. In this paper, we propose an agile framework that caters to various types of data under RESTful web services. All the procedures are automatically operated by the server without human intervention. This work assists the company delivers the tagged data products to users with a high-security level avoiding the risk of information disclosure.","PeriodicalId":146214,"journal":{"name":"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Framework to Data Delivery Security for Big Data Annotation Delivery System\",\"authors\":\"Yanhong Yang, Hongling He, Daliang Wang, Zhongxiang Ding\",\"doi\":\"10.1109/MASS.2018.00082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data annotation plays an important role in Artificial Intelligence model training. The proliferation of data annotation tasks has brought the issue of security of the big data delivery. This work identifies the security framework associated with encryption and compression procedures that support data delivery safety. In this paper, we propose an agile framework that caters to various types of data under RESTful web services. All the procedures are automatically operated by the server without human intervention. This work assists the company delivers the tagged data products to users with a high-security level avoiding the risk of information disclosure.\",\"PeriodicalId\":146214,\"journal\":{\"name\":\"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASS.2018.00082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2018.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大数据标注在人工智能模型训练中发挥着重要作用。数据标注任务的激增带来了大数据交付的安全问题。这项工作确定了与支持数据传递安全的加密和压缩过程相关的安全框架。在本文中,我们提出了一个灵活的框架,以满足RESTful web服务下各种类型的数据。所有过程均由服务器自动操作,无需人工干预。这项工作有助于公司将标记的数据产品以高安全级别交付给用户,避免信息泄露的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework to Data Delivery Security for Big Data Annotation Delivery System
Big data annotation plays an important role in Artificial Intelligence model training. The proliferation of data annotation tasks has brought the issue of security of the big data delivery. This work identifies the security framework associated with encryption and compression procedures that support data delivery safety. In this paper, we propose an agile framework that caters to various types of data under RESTful web services. All the procedures are automatically operated by the server without human intervention. This work assists the company delivers the tagged data products to users with a high-security level avoiding the risk of information disclosure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning Based Urban Post-Accidental Congestion Prediction BF-IoT: Securing the IoT Networks via Fingerprinting-Based Device Authentication Achieving Energy Efficiency Through Dynamic Computing Offloading in Mobile Edge-Clouds A Fusion Method of Multiple Sensors Data on Panorama Video for Airport Surface Surveillance Theoretical Round Modification Fault Analysis on AEGIS-128 with Algebraic Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1