非负矩阵分解的梯度平均加速随机乘法更新

Hiroyuki Kasai
{"title":"非负矩阵分解的梯度平均加速随机乘法更新","authors":"Hiroyuki Kasai","doi":"10.23919/EUSIPCO.2018.8553610","DOIUrl":null,"url":null,"abstract":"Nonnegative matrix factorization (NMF) is a powerful tool in data analysis by discovering latent features and part-based patterns from high-dimensional data, and is a special case in which factor matrices have low-rank nonnegative constraints. Applying NMF into huge-size matrices, we specifically address stochastic multiplicative update (MU) rule, which is the most popular, but which has slow convergence property. This present paper introduces a gradient averaging technique of stochastic gradient on the stochastic MU rule, and proposes an accelerated stochastic multiplicative update rule: SAGMU. Extensive computational experiments using both synthetic and real-world datasets demonstrate the effectiveness of SAGMU.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accelerated stochastic multiplicative update with gradient averaging for nonnegative matrix factorizations\",\"authors\":\"Hiroyuki Kasai\",\"doi\":\"10.23919/EUSIPCO.2018.8553610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonnegative matrix factorization (NMF) is a powerful tool in data analysis by discovering latent features and part-based patterns from high-dimensional data, and is a special case in which factor matrices have low-rank nonnegative constraints. Applying NMF into huge-size matrices, we specifically address stochastic multiplicative update (MU) rule, which is the most popular, but which has slow convergence property. This present paper introduces a gradient averaging technique of stochastic gradient on the stochastic MU rule, and proposes an accelerated stochastic multiplicative update rule: SAGMU. Extensive computational experiments using both synthetic and real-world datasets demonstrate the effectiveness of SAGMU.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

非负矩阵分解(NMF)是一种从高维数据中发现潜在特征和基于部件的模式的强大数据分析工具,是因子矩阵具有低秩非负约束的特殊情况。将NMF应用到大矩阵中,我们特别解决了随机乘法更新(MU)规则,这是最流行的规则,但收敛速度慢。本文介绍了随机梯度在随机MU规则上的梯度平均技术,并提出了一种加速的随机乘法更新规则:SAGMU。使用合成数据集和真实数据集的大量计算实验证明了SAGMU的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerated stochastic multiplicative update with gradient averaging for nonnegative matrix factorizations
Nonnegative matrix factorization (NMF) is a powerful tool in data analysis by discovering latent features and part-based patterns from high-dimensional data, and is a special case in which factor matrices have low-rank nonnegative constraints. Applying NMF into huge-size matrices, we specifically address stochastic multiplicative update (MU) rule, which is the most popular, but which has slow convergence property. This present paper introduces a gradient averaging technique of stochastic gradient on the stochastic MU rule, and proposes an accelerated stochastic multiplicative update rule: SAGMU. Extensive computational experiments using both synthetic and real-world datasets demonstrate the effectiveness of SAGMU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1