{"title":"基于自适应系数SPGD算法的激光扫描共聚焦显微镜无波前像差校正","authors":"Tianyu Zhang, Zhizheng Wu, Xiang Wei, Feng Li, Jialiang Wu, Kongbin Zhu","doi":"10.1109/CACRE50138.2020.9229951","DOIUrl":null,"url":null,"abstract":"Laser scanning confocal microscopy (LSCM) has become a common method for biological observation and medical science. Compared with traditional optical microscope, LSCM has the advantages of high contrast and three-dimensional (3D) imaging. However, with the increase of image depth, the resolution and contrast will be reduced due to the complexity of biological tissue aberrations. Adaptive optics system is an effective method to eliminate aberration. In this paper, a wavefront sensorless adaptive optics system is used to correct aberrations generated by complex refractive index of biological tissue. In order to increase the convergence speed and reduce the influence of photobleaching, an improved stochastic parallel gradient descent algorithm with adaptive coefficient is used to control the AO system. The optical path is simulated in ZEMAX and the feasibility of the proposed algorithm is verified in MATLAB. All simulation results demonstrate that the optimal algorithm can correct the aberration effectively with the designed optical system.","PeriodicalId":325195,"journal":{"name":"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavefront sensorless aberration correction utilizing SPGD algorithm with adaptive coefficient for laser scanning confocal microscopy\",\"authors\":\"Tianyu Zhang, Zhizheng Wu, Xiang Wei, Feng Li, Jialiang Wu, Kongbin Zhu\",\"doi\":\"10.1109/CACRE50138.2020.9229951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser scanning confocal microscopy (LSCM) has become a common method for biological observation and medical science. Compared with traditional optical microscope, LSCM has the advantages of high contrast and three-dimensional (3D) imaging. However, with the increase of image depth, the resolution and contrast will be reduced due to the complexity of biological tissue aberrations. Adaptive optics system is an effective method to eliminate aberration. In this paper, a wavefront sensorless adaptive optics system is used to correct aberrations generated by complex refractive index of biological tissue. In order to increase the convergence speed and reduce the influence of photobleaching, an improved stochastic parallel gradient descent algorithm with adaptive coefficient is used to control the AO system. The optical path is simulated in ZEMAX and the feasibility of the proposed algorithm is verified in MATLAB. All simulation results demonstrate that the optimal algorithm can correct the aberration effectively with the designed optical system.\",\"PeriodicalId\":325195,\"journal\":{\"name\":\"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACRE50138.2020.9229951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE50138.2020.9229951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wavefront sensorless aberration correction utilizing SPGD algorithm with adaptive coefficient for laser scanning confocal microscopy
Laser scanning confocal microscopy (LSCM) has become a common method for biological observation and medical science. Compared with traditional optical microscope, LSCM has the advantages of high contrast and three-dimensional (3D) imaging. However, with the increase of image depth, the resolution and contrast will be reduced due to the complexity of biological tissue aberrations. Adaptive optics system is an effective method to eliminate aberration. In this paper, a wavefront sensorless adaptive optics system is used to correct aberrations generated by complex refractive index of biological tissue. In order to increase the convergence speed and reduce the influence of photobleaching, an improved stochastic parallel gradient descent algorithm with adaptive coefficient is used to control the AO system. The optical path is simulated in ZEMAX and the feasibility of the proposed algorithm is verified in MATLAB. All simulation results demonstrate that the optimal algorithm can correct the aberration effectively with the designed optical system.