基于高级分析的多部分对象的通用检测

J. Bernier, R. Bergevin
{"title":"基于高级分析的多部分对象的通用检测","authors":"J. Bernier, R. Bergevin","doi":"10.1109/CRV.2006.36","DOIUrl":null,"url":null,"abstract":"A method is proposed to detect multi-part man-made or natural objects in complex images. It consists in first extracting simple curves and straight lines from the edge map. Then, a search tree is expanded by selecting and ordering the segmented primitives on the basis of generic local and global grouping criteria. The set of partial contours provided by the parallel search are combined into more complex forms. Global scores produce a sorted list of potential object silhouettes.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generic Detection of Multi-Part Objects by High-Level Analysis\",\"authors\":\"J. Bernier, R. Bergevin\",\"doi\":\"10.1109/CRV.2006.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method is proposed to detect multi-part man-made or natural objects in complex images. It consists in first extracting simple curves and straight lines from the edge map. Then, a search tree is expanded by selecting and ordering the segmented primitives on the basis of generic local and global grouping criteria. The set of partial contours provided by the parallel search are combined into more complex forms. Global scores produce a sorted list of potential object silhouettes.\",\"PeriodicalId\":369170,\"journal\":{\"name\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2006.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种复杂图像中多部分人造或自然物体的检测方法。首先从边缘图中提取简单的曲线和直线。然后,根据一般的局部和全局分组标准,通过选择和排序分割的原语来扩展搜索树。由并行搜索提供的部分轮廓集被组合成更复杂的形式。全局得分产生一个潜在对象轮廓的排序列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generic Detection of Multi-Part Objects by High-Level Analysis
A method is proposed to detect multi-part man-made or natural objects in complex images. It consists in first extracting simple curves and straight lines from the edge map. Then, a search tree is expanded by selecting and ordering the segmented primitives on the basis of generic local and global grouping criteria. The set of partial contours provided by the parallel search are combined into more complex forms. Global scores produce a sorted list of potential object silhouettes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Classification and Retrieval using Correlation Photometric Stereo with Nearby Planar Distributed Illuminants Evolving a Vision-Based Line-Following Robot Controller Line Extraction with Composite Background Subtract The Nomad 200 and the Nomad SuperScout: Reverse engineered and resurrected
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1