{"title":"集成微流控通道的柔性再生型神经电极","authors":"T. Suzuki, N. Kotake, K. Mabuchi, S. Takeuchi","doi":"10.1109/MMB.2006.251557","DOIUrl":null,"url":null,"abstract":"The development of a neural interface that will allow signals from the human nervous system to control external equipment is extremely important for the next generation of prosthetic systems. A novel multichannel regeneration-type nerve electrode designed to record from and stimulate peripheral nerves has been developed to allow the control of artificial hands and to generate artificial sensations. In this study a novel flexible regeneration microelectrode based on the nerve regeneration principle was designed and fabricated using MEMS technologies. The electrode, which was fabricated on a 20-mum-thick parylene C substrate, has multiple fluidic channels. Each fluidic channel was 100 mum widetimes40 mum hightimes1500 mum long and featured multiple electrodes inside them as recording and stimulating sites. They also served as guidance channels for the regenerating axons. The authors are currently attempting to evaluate the probes using the sciatic nerve of rats","PeriodicalId":170356,"journal":{"name":"2006 International Conference on Microtechnologies in Medicine and Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Flexible Regeneration-type Nerve Electrode with Integrated Microfluidic Channels\",\"authors\":\"T. Suzuki, N. Kotake, K. Mabuchi, S. Takeuchi\",\"doi\":\"10.1109/MMB.2006.251557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of a neural interface that will allow signals from the human nervous system to control external equipment is extremely important for the next generation of prosthetic systems. A novel multichannel regeneration-type nerve electrode designed to record from and stimulate peripheral nerves has been developed to allow the control of artificial hands and to generate artificial sensations. In this study a novel flexible regeneration microelectrode based on the nerve regeneration principle was designed and fabricated using MEMS technologies. The electrode, which was fabricated on a 20-mum-thick parylene C substrate, has multiple fluidic channels. Each fluidic channel was 100 mum widetimes40 mum hightimes1500 mum long and featured multiple electrodes inside them as recording and stimulating sites. They also served as guidance channels for the regenerating axons. The authors are currently attempting to evaluate the probes using the sciatic nerve of rats\",\"PeriodicalId\":170356,\"journal\":{\"name\":\"2006 International Conference on Microtechnologies in Medicine and Biology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Microtechnologies in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMB.2006.251557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microtechnologies in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMB.2006.251557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexible Regeneration-type Nerve Electrode with Integrated Microfluidic Channels
The development of a neural interface that will allow signals from the human nervous system to control external equipment is extremely important for the next generation of prosthetic systems. A novel multichannel regeneration-type nerve electrode designed to record from and stimulate peripheral nerves has been developed to allow the control of artificial hands and to generate artificial sensations. In this study a novel flexible regeneration microelectrode based on the nerve regeneration principle was designed and fabricated using MEMS technologies. The electrode, which was fabricated on a 20-mum-thick parylene C substrate, has multiple fluidic channels. Each fluidic channel was 100 mum widetimes40 mum hightimes1500 mum long and featured multiple electrodes inside them as recording and stimulating sites. They also served as guidance channels for the regenerating axons. The authors are currently attempting to evaluate the probes using the sciatic nerve of rats