为水下/冰下应用设计具有成本效益的可靠MEMS陀螺仪

Lihong Zhang, V. Mašek, N. Sanatdoost
{"title":"为水下/冰下应用设计具有成本效益的可靠MEMS陀螺仪","authors":"Lihong Zhang, V. Mašek, N. Sanatdoost","doi":"10.1109/OCEANS.2014.7003041","DOIUrl":null,"url":null,"abstract":"Underwater/under-ice navigation systems are dependent on the precision of the embedded inertial measurement unit. The performance of MEMS-based gyroscopes, one of the most important inertial sensors, is heavily affected by fabrication imperfection and environmental variation. In this paper we propose and optimize a new mechanical structure for Z-axis tuning-fork gyroscopes along with atmospheric pressure packaging. We have focused on, first, applying gap-varying capacitive sensing method to enhance the sensor resolution, and second, optimizing the design by modifying the location and shape of suspending frame/cantilevers as well as tuning their parameters to make the gyroscope structure more robust against fabrication variation. Our numerical analyses show that the optimized gyroscope structure is more immune to fabrication imperfection, and the proposed sensing structure is able to provide better output capacitance response to external rotation, compared to the previously published work.","PeriodicalId":368693,"journal":{"name":"2014 Oceans - St. John's","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of cost-effective reliable MEMS gyroscopes for underwater/under-ice applications\",\"authors\":\"Lihong Zhang, V. Mašek, N. Sanatdoost\",\"doi\":\"10.1109/OCEANS.2014.7003041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater/under-ice navigation systems are dependent on the precision of the embedded inertial measurement unit. The performance of MEMS-based gyroscopes, one of the most important inertial sensors, is heavily affected by fabrication imperfection and environmental variation. In this paper we propose and optimize a new mechanical structure for Z-axis tuning-fork gyroscopes along with atmospheric pressure packaging. We have focused on, first, applying gap-varying capacitive sensing method to enhance the sensor resolution, and second, optimizing the design by modifying the location and shape of suspending frame/cantilevers as well as tuning their parameters to make the gyroscope structure more robust against fabrication variation. Our numerical analyses show that the optimized gyroscope structure is more immune to fabrication imperfection, and the proposed sensing structure is able to provide better output capacitance response to external rotation, compared to the previously published work.\",\"PeriodicalId\":368693,\"journal\":{\"name\":\"2014 Oceans - St. John's\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Oceans - St. John's\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2014.7003041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Oceans - St. John's","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2014.7003041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

水下/冰下导航系统依赖于嵌入式惯性测量单元的精度。mems陀螺仪是最重要的惯性传感器之一,其性能受到制造缺陷和环境变化的严重影响。本文提出并优化了一种新的带大气压封装的z轴音叉陀螺仪机械结构。首先,我们着重于应用变间隙电容传感方法来提高传感器分辨率;其次,通过修改悬架/悬臂梁的位置和形状以及调整其参数来优化设计,使陀螺仪结构对制造变化更具鲁棒性。我们的数值分析表明,优化后的陀螺仪结构更不受制造缺陷的影响,并且与先前发表的工作相比,所提出的传感结构能够提供更好的外旋转输出电容响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of cost-effective reliable MEMS gyroscopes for underwater/under-ice applications
Underwater/under-ice navigation systems are dependent on the precision of the embedded inertial measurement unit. The performance of MEMS-based gyroscopes, one of the most important inertial sensors, is heavily affected by fabrication imperfection and environmental variation. In this paper we propose and optimize a new mechanical structure for Z-axis tuning-fork gyroscopes along with atmospheric pressure packaging. We have focused on, first, applying gap-varying capacitive sensing method to enhance the sensor resolution, and second, optimizing the design by modifying the location and shape of suspending frame/cantilevers as well as tuning their parameters to make the gyroscope structure more robust against fabrication variation. Our numerical analyses show that the optimized gyroscope structure is more immune to fabrication imperfection, and the proposed sensing structure is able to provide better output capacitance response to external rotation, compared to the previously published work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new segmentation approach for unimodal image histograms: Application to the detection of regions of interest in sonar images Electronic navigational chart generator for a marine mobile augmented reality system A hybrid registration approach combining SLAM and elastic matching for automatic side-scan sonar mosaic Unsupervised knowledge discovery of seabed types using competitive neural network: Application to sidescan sonar images European multidisciplinary seafloor and water-column observatory (EMSO): Power and Internet to European waters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1