{"title":"双频段异构网络下D2D通信的传输容量","authors":"Ziyang Liu, Tao Peng, Qianxi Lu, Wenbo Wang","doi":"10.4108/ICST.CROWNCOM.2012.249072","DOIUrl":null,"url":null,"abstract":"This paper analyzes the maximum achievable transmission capacity of the D2D communication system under heterogeneous networks. The heterogeneous networks contain two primary systems working on independent bands and D2D communication guarantees the target outage probabilities of both systems on each band. By utilizing stochastic geometry, the effects of the spatial densities and the transmission power allocation ratio on the achievable transmission capacity are presented. Moreover, the optimal transmission density of D2D pairs and the optimal power allocation ratio are derived. The maximum capacity of D2D communication is defined based on the former optimal value from theoretical results. It is shown that the optimal power allocation ratio is proportional to the product of bandwidth, node density and transmission power of two primary systems.","PeriodicalId":286843,"journal":{"name":"2012 7th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Transmission capacity of D2D communication under heterogeneous networks with Dual Bands\",\"authors\":\"Ziyang Liu, Tao Peng, Qianxi Lu, Wenbo Wang\",\"doi\":\"10.4108/ICST.CROWNCOM.2012.249072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the maximum achievable transmission capacity of the D2D communication system under heterogeneous networks. The heterogeneous networks contain two primary systems working on independent bands and D2D communication guarantees the target outage probabilities of both systems on each band. By utilizing stochastic geometry, the effects of the spatial densities and the transmission power allocation ratio on the achievable transmission capacity are presented. Moreover, the optimal transmission density of D2D pairs and the optimal power allocation ratio are derived. The maximum capacity of D2D communication is defined based on the former optimal value from theoretical results. It is shown that the optimal power allocation ratio is proportional to the product of bandwidth, node density and transmission power of two primary systems.\",\"PeriodicalId\":286843,\"journal\":{\"name\":\"2012 7th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ICST.CROWNCOM.2012.249072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.CROWNCOM.2012.249072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transmission capacity of D2D communication under heterogeneous networks with Dual Bands
This paper analyzes the maximum achievable transmission capacity of the D2D communication system under heterogeneous networks. The heterogeneous networks contain two primary systems working on independent bands and D2D communication guarantees the target outage probabilities of both systems on each band. By utilizing stochastic geometry, the effects of the spatial densities and the transmission power allocation ratio on the achievable transmission capacity are presented. Moreover, the optimal transmission density of D2D pairs and the optimal power allocation ratio are derived. The maximum capacity of D2D communication is defined based on the former optimal value from theoretical results. It is shown that the optimal power allocation ratio is proportional to the product of bandwidth, node density and transmission power of two primary systems.