遥感影像分类与决策融合的统计与神经方法比较研究

S. Mahmoud, M. El-Melegy
{"title":"遥感影像分类与决策融合的统计与神经方法比较研究","authors":"S. Mahmoud, M. El-Melegy","doi":"10.1109/ICEEC.2004.1374456","DOIUrl":null,"url":null,"abstract":"This paper focuses on evaluating a number of statistical and neural methods for supervised, pixel-wise remote-sensing image classification and decision fusion. Despite the enormous progress in the analysis of remote sensing imagery over the past three decades, still much is desired in the area of image classiJication as no specxjk algorithm is known to provide accurate results under all circumstances. Decision fusion may be pursued to combine the outputs of dflerent classifiers applied on the same data, in the hope of combining the best of what each approach provides. We report the results of the comparison between several classification and fusion methods on two real datasets, one of which is the standard benchmark Satimage dataset. It is shown that the fusion approaches can indeed outpei$orm the pei$ormance of the best classif er.","PeriodicalId":180043,"journal":{"name":"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical and neural methods for remote-sensing image classification and decision fusion: a comparative study\",\"authors\":\"S. Mahmoud, M. El-Melegy\",\"doi\":\"10.1109/ICEEC.2004.1374456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on evaluating a number of statistical and neural methods for supervised, pixel-wise remote-sensing image classification and decision fusion. Despite the enormous progress in the analysis of remote sensing imagery over the past three decades, still much is desired in the area of image classiJication as no specxjk algorithm is known to provide accurate results under all circumstances. Decision fusion may be pursued to combine the outputs of dflerent classifiers applied on the same data, in the hope of combining the best of what each approach provides. We report the results of the comparison between several classification and fusion methods on two real datasets, one of which is the standard benchmark Satimage dataset. It is shown that the fusion approaches can indeed outpei$orm the pei$ormance of the best classif er.\",\"PeriodicalId\":180043,\"journal\":{\"name\":\"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEC.2004.1374456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEC.2004.1374456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文重点评估了一些用于监督的、逐像素的遥感图像分类和决策融合的统计和神经方法。尽管近三十年来遥感图像分析取得了巨大的进步,但由于目前还没有一种specxjk算法能够在所有情况下提供准确的结果,因此在图像分类领域还有很多需要改进的地方。可以进行决策融合,将应用于同一数据的不同分类器的输出结合起来,以期结合每种方法提供的最佳功能。我们报告了在两个真实数据集上几种分类和融合方法的比较结果,其中一个是标准基准Satimage数据集。结果表明,这些融合方法确实可以优于最佳分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical and neural methods for remote-sensing image classification and decision fusion: a comparative study
This paper focuses on evaluating a number of statistical and neural methods for supervised, pixel-wise remote-sensing image classification and decision fusion. Despite the enormous progress in the analysis of remote sensing imagery over the past three decades, still much is desired in the area of image classiJication as no specxjk algorithm is known to provide accurate results under all circumstances. Decision fusion may be pursued to combine the outputs of dflerent classifiers applied on the same data, in the hope of combining the best of what each approach provides. We report the results of the comparison between several classification and fusion methods on two real datasets, one of which is the standard benchmark Satimage dataset. It is shown that the fusion approaches can indeed outpei$orm the pei$ormance of the best classif er.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of superconducting microstrip line using transverse resonance technique Sensitivity of radial-basis networks to single-example decision classes Comparison of branch prediction schemes for superscalar processors ICEEC 2004 Integrator frequency synthesizer Fuzzy logic control of the mean arterial pressure of ICu patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1