{"title":"基于EEMD云模型和PSO_SVM的齿轮故障诊断方法","authors":"Yunhui Ou, Darong Huang, Chengchong Hu, Haiyang Hao, J. Gong, Ling Zhao","doi":"10.1109/DDCLS52934.2021.9455486","DOIUrl":null,"url":null,"abstract":"Aiming at the difficulty in identifying small fault of gear, a gear diagnosis method was proposed based on integrated empirical mode decomposition (EEMD), cloud model, support vector machine, and particle swarm optimization (PSO-SVM). Firstly, the vibration signal was decomposed into several IMF components by EEMD, and the backward cloud generator calculation was performed on the IMF components to obtain the digital characteristics of the cloud model. Then, the digital features obtained and the frequency domain features and time-domain features obtained after linear reconstruction were constructed as feature vectors, which were dimensionalized by principal component analysis. Finally, the features after dimensionality reduction are input into PSO-SVM for classification training and testing. The results show that this method can effectively complete gear fault diagnosis and has a higher recognition rate.","PeriodicalId":325897,"journal":{"name":"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Gear Fault Diagnosis Method Based on EEMD Cloud Model and PSO_SVM\",\"authors\":\"Yunhui Ou, Darong Huang, Chengchong Hu, Haiyang Hao, J. Gong, Ling Zhao\",\"doi\":\"10.1109/DDCLS52934.2021.9455486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the difficulty in identifying small fault of gear, a gear diagnosis method was proposed based on integrated empirical mode decomposition (EEMD), cloud model, support vector machine, and particle swarm optimization (PSO-SVM). Firstly, the vibration signal was decomposed into several IMF components by EEMD, and the backward cloud generator calculation was performed on the IMF components to obtain the digital characteristics of the cloud model. Then, the digital features obtained and the frequency domain features and time-domain features obtained after linear reconstruction were constructed as feature vectors, which were dimensionalized by principal component analysis. Finally, the features after dimensionality reduction are input into PSO-SVM for classification training and testing. The results show that this method can effectively complete gear fault diagnosis and has a higher recognition rate.\",\"PeriodicalId\":325897,\"journal\":{\"name\":\"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS52934.2021.9455486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS52934.2021.9455486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Gear Fault Diagnosis Method Based on EEMD Cloud Model and PSO_SVM
Aiming at the difficulty in identifying small fault of gear, a gear diagnosis method was proposed based on integrated empirical mode decomposition (EEMD), cloud model, support vector machine, and particle swarm optimization (PSO-SVM). Firstly, the vibration signal was decomposed into several IMF components by EEMD, and the backward cloud generator calculation was performed on the IMF components to obtain the digital characteristics of the cloud model. Then, the digital features obtained and the frequency domain features and time-domain features obtained after linear reconstruction were constructed as feature vectors, which were dimensionalized by principal component analysis. Finally, the features after dimensionality reduction are input into PSO-SVM for classification training and testing. The results show that this method can effectively complete gear fault diagnosis and has a higher recognition rate.