{"title":"用matlab建模预测dab调制与传输的性能","authors":"L.M. Gaetzi, M. Hawksford","doi":"10.1109/ISCE.2004.1375951","DOIUrl":null,"url":null,"abstract":"Abstract — A Simulink-Matlab simulation model is described that enables an accurate performance prediction of complete DAB (digital audio broadcasting) transmission channels. Embedded compiled C-code subroutines include modulation protocols, error correction and MPEG layer-2 perceptual audio coding. Rapid assessment of critical design related factors could be performed that include channel interference, multi-path reflection and a range of modulation-parameters. Software is PC compatible with both DAB system and transmission channel configurable using a bespoke graphical user interface, which facilitates changing on the fly modulation and transmission-path related parameters. Overall audio quality can also be assessed 1 . Index Terms — DAB, Matlab, Modulation, Simulation. I. I NTRODUCTION TO DAB IGITAL audio broadcasting (DAB) was developed in the early 1990’s by the European consortium Eureka 147 [1], mainly to replace the widely used analogue frequency modulation (FM) broadcasting system. The VHF band is a scarce resource in many parts of the world, so there was a need for a spectrally more efficient modulation method than FM. In DAB, this is achieved by multiplexing several programmes into a so-called ensemble with a bandwidth of 1.536 MHz, where the number of programmes per ensemble is flexible and depends on individual programme bandwidth requirements. Further, conventional analogue techniques do not provide satisfactory performance in a mobile environment, because they are highly affected by multi-path propagation and thus fading. In DAB, orthogonal frequency division multiplex (OFDM) has been chosen to overcome the effects of multi-path propagation, enabling the system to operate in so-called single-frequency networks (SFN). The modeling and processing of a DAB system is well suited for Simulink and Matlab. Less common blocks can be implemented in Simulink by programming appropriate 'C'-code that can be compiled and dynamically linked to the model by means of","PeriodicalId":169376,"journal":{"name":"IEEE International Symposium on Consumer Electronics, 2004","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Performance prediction of dab modulation and transmission using matlab modeling\",\"authors\":\"L.M. Gaetzi, M. Hawksford\",\"doi\":\"10.1109/ISCE.2004.1375951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract — A Simulink-Matlab simulation model is described that enables an accurate performance prediction of complete DAB (digital audio broadcasting) transmission channels. Embedded compiled C-code subroutines include modulation protocols, error correction and MPEG layer-2 perceptual audio coding. Rapid assessment of critical design related factors could be performed that include channel interference, multi-path reflection and a range of modulation-parameters. Software is PC compatible with both DAB system and transmission channel configurable using a bespoke graphical user interface, which facilitates changing on the fly modulation and transmission-path related parameters. Overall audio quality can also be assessed 1 . Index Terms — DAB, Matlab, Modulation, Simulation. I. I NTRODUCTION TO DAB IGITAL audio broadcasting (DAB) was developed in the early 1990’s by the European consortium Eureka 147 [1], mainly to replace the widely used analogue frequency modulation (FM) broadcasting system. The VHF band is a scarce resource in many parts of the world, so there was a need for a spectrally more efficient modulation method than FM. In DAB, this is achieved by multiplexing several programmes into a so-called ensemble with a bandwidth of 1.536 MHz, where the number of programmes per ensemble is flexible and depends on individual programme bandwidth requirements. Further, conventional analogue techniques do not provide satisfactory performance in a mobile environment, because they are highly affected by multi-path propagation and thus fading. In DAB, orthogonal frequency division multiplex (OFDM) has been chosen to overcome the effects of multi-path propagation, enabling the system to operate in so-called single-frequency networks (SFN). The modeling and processing of a DAB system is well suited for Simulink and Matlab. Less common blocks can be implemented in Simulink by programming appropriate 'C'-code that can be compiled and dynamically linked to the model by means of\",\"PeriodicalId\":169376,\"journal\":{\"name\":\"IEEE International Symposium on Consumer Electronics, 2004\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Consumer Electronics, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCE.2004.1375951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Consumer Electronics, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2004.1375951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance prediction of dab modulation and transmission using matlab modeling
Abstract — A Simulink-Matlab simulation model is described that enables an accurate performance prediction of complete DAB (digital audio broadcasting) transmission channels. Embedded compiled C-code subroutines include modulation protocols, error correction and MPEG layer-2 perceptual audio coding. Rapid assessment of critical design related factors could be performed that include channel interference, multi-path reflection and a range of modulation-parameters. Software is PC compatible with both DAB system and transmission channel configurable using a bespoke graphical user interface, which facilitates changing on the fly modulation and transmission-path related parameters. Overall audio quality can also be assessed 1 . Index Terms — DAB, Matlab, Modulation, Simulation. I. I NTRODUCTION TO DAB IGITAL audio broadcasting (DAB) was developed in the early 1990’s by the European consortium Eureka 147 [1], mainly to replace the widely used analogue frequency modulation (FM) broadcasting system. The VHF band is a scarce resource in many parts of the world, so there was a need for a spectrally more efficient modulation method than FM. In DAB, this is achieved by multiplexing several programmes into a so-called ensemble with a bandwidth of 1.536 MHz, where the number of programmes per ensemble is flexible and depends on individual programme bandwidth requirements. Further, conventional analogue techniques do not provide satisfactory performance in a mobile environment, because they are highly affected by multi-path propagation and thus fading. In DAB, orthogonal frequency division multiplex (OFDM) has been chosen to overcome the effects of multi-path propagation, enabling the system to operate in so-called single-frequency networks (SFN). The modeling and processing of a DAB system is well suited for Simulink and Matlab. Less common blocks can be implemented in Simulink by programming appropriate 'C'-code that can be compiled and dynamically linked to the model by means of