数据中心2020:面向数据应用的近内存加速

E. Doller, Ameen Akel, Jeffrey Wang, Ken Curewitz, S. Eilert
{"title":"数据中心2020:面向数据应用的近内存加速","authors":"E. Doller, Ameen Akel, Jeffrey Wang, Ken Curewitz, S. Eilert","doi":"10.1109/VLSIC.2014.6858357","DOIUrl":null,"url":null,"abstract":"In the years between now and 2020, we should expect continued exponential data growth [15][16]. A number of ongoing advances in storage: the transition to solid-state drives (SSDs), the scaling of NAND flash capacity, and advanced silicon packaging techniques will dramatically increase the capacity of storage subsystems over the same timeframe. This will significantly reduce the ratio of storage bandwidth to storage density. Consequently, the majority of data in 2020 will either be cold or will require near-memory acceleration to pull rich information out of the sea of big data. We argue that, increasingly over time, value lies not merely in the size of the data, but rather in what one can do with it.","PeriodicalId":381216,"journal":{"name":"2014 Symposium on VLSI Circuits Digest of Technical Papers","volume":"318 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"DataCenter 2020: Near-memory acceleration for data-oriented applications\",\"authors\":\"E. Doller, Ameen Akel, Jeffrey Wang, Ken Curewitz, S. Eilert\",\"doi\":\"10.1109/VLSIC.2014.6858357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the years between now and 2020, we should expect continued exponential data growth [15][16]. A number of ongoing advances in storage: the transition to solid-state drives (SSDs), the scaling of NAND flash capacity, and advanced silicon packaging techniques will dramatically increase the capacity of storage subsystems over the same timeframe. This will significantly reduce the ratio of storage bandwidth to storage density. Consequently, the majority of data in 2020 will either be cold or will require near-memory acceleration to pull rich information out of the sea of big data. We argue that, increasingly over time, value lies not merely in the size of the data, but rather in what one can do with it.\",\"PeriodicalId\":381216,\"journal\":{\"name\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"volume\":\"318 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2014.6858357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Circuits Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2014.6858357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

从现在到2020年,我们应该期待持续的指数级数据增长[15][16]。存储方面的一些持续进步:向固态硬盘(ssd)的过渡、NAND闪存容量的扩展以及先进的硅封装技术将在同一时间段内显著增加存储子系统的容量。这将显著降低存储带宽与存储密度的比率。因此,2020年的大多数数据要么是冷的,要么需要近内存加速才能从大数据的海洋中提取丰富的信息。我们认为,随着时间的推移,价值不仅在于数据的大小,还在于人们能用数据做什么。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DataCenter 2020: Near-memory acceleration for data-oriented applications
In the years between now and 2020, we should expect continued exponential data growth [15][16]. A number of ongoing advances in storage: the transition to solid-state drives (SSDs), the scaling of NAND flash capacity, and advanced silicon packaging techniques will dramatically increase the capacity of storage subsystems over the same timeframe. This will significantly reduce the ratio of storage bandwidth to storage density. Consequently, the majority of data in 2020 will either be cold or will require near-memory acceleration to pull rich information out of the sea of big data. We argue that, increasingly over time, value lies not merely in the size of the data, but rather in what one can do with it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fully-differential capacitive touch controller with input common-mode feedback for symmetric display noise cancellation A single-chip encrypted wireless 12-lead ECG smart shirt for continuous health monitoring A power-harvesting pad-less mm-sized 24/60GHz passive radio with on-chip antennas ReRAM-based 4T2R nonvolatile TCAM with 7x NVM-stress reduction, and 4x improvement in speed-wordlength-capacity for normally-off instant-on filter-based search engines used in big-data processing 320×240 oversampled digital single photon counting image sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1