{"title":"分子阵列无标记成像等离子体生物传感器的优化研究神经退行性疾病的诊断","authors":"J. Richens, K. Vere, P. O'shea","doi":"10.1109/FOI.2011.6154819","DOIUrl":null,"url":null,"abstract":"Plasmonic-based biosensors offer huge potential as diagnostic instruments. The greatest benefit of such detection modalities is that they are label-free and thus only a single selective ligand is required for target detection, decreasing both protocol time and the required user proficiency. However, during technology development, the problems associated with using a detection system based upon an addition of mass need to be considered to ensure accurate target detection and quantification. This is particularly important in diagnostic applications as biomarkers are likely to be identified in complex bodily fluids including blood plasma, cerebrospinal fluid or saliva. We have extended these analytical approaches by implementing molecular arrays that recognise panels of marker biomolecules to discriminate the presence and severity of Alzheimer's Disease.","PeriodicalId":240419,"journal":{"name":"2011 Functional Optical Imaging","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimisation of plasmonic-based biosensors for label-free imaging of molecular arrays; towards diagnosis of neurodegenerative diseases\",\"authors\":\"J. Richens, K. Vere, P. O'shea\",\"doi\":\"10.1109/FOI.2011.6154819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasmonic-based biosensors offer huge potential as diagnostic instruments. The greatest benefit of such detection modalities is that they are label-free and thus only a single selective ligand is required for target detection, decreasing both protocol time and the required user proficiency. However, during technology development, the problems associated with using a detection system based upon an addition of mass need to be considered to ensure accurate target detection and quantification. This is particularly important in diagnostic applications as biomarkers are likely to be identified in complex bodily fluids including blood plasma, cerebrospinal fluid or saliva. We have extended these analytical approaches by implementing molecular arrays that recognise panels of marker biomolecules to discriminate the presence and severity of Alzheimer's Disease.\",\"PeriodicalId\":240419,\"journal\":{\"name\":\"2011 Functional Optical Imaging\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Functional Optical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOI.2011.6154819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Functional Optical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOI.2011.6154819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimisation of plasmonic-based biosensors for label-free imaging of molecular arrays; towards diagnosis of neurodegenerative diseases
Plasmonic-based biosensors offer huge potential as diagnostic instruments. The greatest benefit of such detection modalities is that they are label-free and thus only a single selective ligand is required for target detection, decreasing both protocol time and the required user proficiency. However, during technology development, the problems associated with using a detection system based upon an addition of mass need to be considered to ensure accurate target detection and quantification. This is particularly important in diagnostic applications as biomarkers are likely to be identified in complex bodily fluids including blood plasma, cerebrospinal fluid or saliva. We have extended these analytical approaches by implementing molecular arrays that recognise panels of marker biomolecules to discriminate the presence and severity of Alzheimer's Disease.