{"title":"量化布尔公式的对偶感知演算","authors":"Katalin Fazekas, M. Seidl, Armin Biere","doi":"10.1109/SYNASC.2016.038","DOIUrl":null,"url":null,"abstract":"Learning and backjumping are essential features in search-based decision procedures for Quantified Boolean Formulas (QBF). To obtain a better understanding of such procedures, we present a formal framework, which allows to simultaneously reason on prenex conjunctive and disjunctive normal form. It captures both satisfying and falsifying search statesin a symmetric way. This symmetry simplifies the framework and offers potential for further variants.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Duality-Aware Calculus for Quantified Boolean Formulas\",\"authors\":\"Katalin Fazekas, M. Seidl, Armin Biere\",\"doi\":\"10.1109/SYNASC.2016.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning and backjumping are essential features in search-based decision procedures for Quantified Boolean Formulas (QBF). To obtain a better understanding of such procedures, we present a formal framework, which allows to simultaneously reason on prenex conjunctive and disjunctive normal form. It captures both satisfying and falsifying search statesin a symmetric way. This symmetry simplifies the framework and offers potential for further variants.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Duality-Aware Calculus for Quantified Boolean Formulas
Learning and backjumping are essential features in search-based decision procedures for Quantified Boolean Formulas (QBF). To obtain a better understanding of such procedures, we present a formal framework, which allows to simultaneously reason on prenex conjunctive and disjunctive normal form. It captures both satisfying and falsifying search statesin a symmetric way. This symmetry simplifies the framework and offers potential for further variants.