基于深度学习和CIELAB色彩空间模型的无人机图像火灾探测

Yash Jain, Vishu Saxena, Sparsh Mittal
{"title":"基于深度学习和CIELAB色彩空间模型的无人机图像火灾探测","authors":"Yash Jain, Vishu Saxena, Sparsh Mittal","doi":"10.1145/3564121.3564130","DOIUrl":null,"url":null,"abstract":"Wildfires can cause significant damage to forests and endanger wildlife. Detecting these forest fires at the initial stages helps the authorities in preventing them from spreading further. In this paper, we first propose a novel technique, termed CIELAB-color technique, which detects fire based on the color of the fire in CIELAB color space. We train state-of-art CNNs to detect fire. Since deep learning (CNNs) and image processing have complementary strengths, we combine their strengths to propose an ensemble architecture. It uses two CNNs and the CIELAB-color technique and then performs majority voting to decide the final fire/no-fire prediction output. We finally propose a chain-of-classifiers technique which first tests an image using the CIELAB-color technique. If an image is flagged as no-fire, then it further checks the image using a CNN. This technique has lower model size than ensemble technique. On FLAME dataset, the ensemble technique provides 93.32% accuracy, outperforming both previous works ( accuracy) and individually using either CNNs or CIELAB-color technique. The source code can be obtained from https://github.com/CandleLabAI/FireDetection.","PeriodicalId":166150,"journal":{"name":"Proceedings of the Second International Conference on AI-ML Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ensembling Deep Learning And CIELAB Color Space Model for Fire Detection from UAV images\",\"authors\":\"Yash Jain, Vishu Saxena, Sparsh Mittal\",\"doi\":\"10.1145/3564121.3564130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wildfires can cause significant damage to forests and endanger wildlife. Detecting these forest fires at the initial stages helps the authorities in preventing them from spreading further. In this paper, we first propose a novel technique, termed CIELAB-color technique, which detects fire based on the color of the fire in CIELAB color space. We train state-of-art CNNs to detect fire. Since deep learning (CNNs) and image processing have complementary strengths, we combine their strengths to propose an ensemble architecture. It uses two CNNs and the CIELAB-color technique and then performs majority voting to decide the final fire/no-fire prediction output. We finally propose a chain-of-classifiers technique which first tests an image using the CIELAB-color technique. If an image is flagged as no-fire, then it further checks the image using a CNN. This technique has lower model size than ensemble technique. On FLAME dataset, the ensemble technique provides 93.32% accuracy, outperforming both previous works ( accuracy) and individually using either CNNs or CIELAB-color technique. The source code can be obtained from https://github.com/CandleLabAI/FireDetection.\",\"PeriodicalId\":166150,\"journal\":{\"name\":\"Proceedings of the Second International Conference on AI-ML Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second International Conference on AI-ML Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3564121.3564130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Conference on AI-ML Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3564121.3564130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

野火会对森林造成严重破坏,并危及野生动物。在最初阶段发现这些森林火灾有助于当局防止它们进一步蔓延。在本文中,我们首先提出了一种新的技术,称为CIELAB-color技术,该技术基于火灾在CIELAB颜色空间中的颜色来检测火灾。我们训练最先进的cnn来探测火灾。由于深度学习(cnn)和图像处理具有互补的优势,我们将它们的优势结合起来提出一个集成架构。它使用两个cnn和CIELAB-color技术,然后进行多数投票来决定最终的火灾/无火灾预测输出。最后,我们提出了一种分类器链技术,该技术首先使用CIELAB-color技术对图像进行测试。如果图像被标记为无火,那么它将使用CNN进一步检查图像。该技术比集成技术具有更小的模型尺寸。在FLAME数据集上,集成技术提供了93.32%的准确率,优于之前的工作(准确率),并且单独使用cnn或CIELAB-color技术。源代码可以从https://github.com/CandleLabAI/FireDetection获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensembling Deep Learning And CIELAB Color Space Model for Fire Detection from UAV images
Wildfires can cause significant damage to forests and endanger wildlife. Detecting these forest fires at the initial stages helps the authorities in preventing them from spreading further. In this paper, we first propose a novel technique, termed CIELAB-color technique, which detects fire based on the color of the fire in CIELAB color space. We train state-of-art CNNs to detect fire. Since deep learning (CNNs) and image processing have complementary strengths, we combine their strengths to propose an ensemble architecture. It uses two CNNs and the CIELAB-color technique and then performs majority voting to decide the final fire/no-fire prediction output. We finally propose a chain-of-classifiers technique which first tests an image using the CIELAB-color technique. If an image is flagged as no-fire, then it further checks the image using a CNN. This technique has lower model size than ensemble technique. On FLAME dataset, the ensemble technique provides 93.32% accuracy, outperforming both previous works ( accuracy) and individually using either CNNs or CIELAB-color technique. The source code can be obtained from https://github.com/CandleLabAI/FireDetection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Planning System for Smart Charging of Electric Fleets CluSpa: Computation Reduction in CNN Inference by exploiting Clustering and Sparsity Acceleration-aware, Retraining-free Evolutionary Pruning for Automated Fitment of Deep Learning Models on Edge Devices Patch-wise Features for Blur Image Classification Identification of Causal Dependencies in Multivariate Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1