无线网络中自主电源配置与控制的直接强化学习

A. Udenze, K. Mcdonald-Maier
{"title":"无线网络中自主电源配置与控制的直接强化学习","authors":"A. Udenze, K. Mcdonald-Maier","doi":"10.1109/AHS.2009.50","DOIUrl":null,"url":null,"abstract":"In this paper, non deterministic Direct Reinforcement Learning (RL) for controlling the transmission times and power of a Wireless Sensor Network (WSN) node is presented. RL allows for truly autonomous optimal behaviour of agents by requiring no models or supervision to learn. Optimal actions are learnt by repeated interactions with the environment. Performance results are presented for Monte Carlo, TD0 and TDλ. The resultant optimal learned policies are shown to out perform static power control in a stochastic environment.","PeriodicalId":318989,"journal":{"name":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Direct Reinforcement Learning for Autonomous Power Configuration and Control in Wireless Networks\",\"authors\":\"A. Udenze, K. Mcdonald-Maier\",\"doi\":\"10.1109/AHS.2009.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, non deterministic Direct Reinforcement Learning (RL) for controlling the transmission times and power of a Wireless Sensor Network (WSN) node is presented. RL allows for truly autonomous optimal behaviour of agents by requiring no models or supervision to learn. Optimal actions are learnt by repeated interactions with the environment. Performance results are presented for Monte Carlo, TD0 and TDλ. The resultant optimal learned policies are shown to out perform static power control in a stochastic environment.\",\"PeriodicalId\":318989,\"journal\":{\"name\":\"2009 NASA/ESA Conference on Adaptive Hardware and Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 NASA/ESA Conference on Adaptive Hardware and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AHS.2009.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2009.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种用于控制无线传感器网络(WSN)节点传输次数和功率的非确定性直接强化学习(RL)方法。强化学习允许智能体真正自主的最佳行为,不需要模型或监督来学习。最佳行动是通过与环境的反复互动来学习的。给出了蒙特卡罗、TD0和TDλ的性能结果。结果表明,所得到的最优学习策略在随机环境中优于静态功率控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct Reinforcement Learning for Autonomous Power Configuration and Control in Wireless Networks
In this paper, non deterministic Direct Reinforcement Learning (RL) for controlling the transmission times and power of a Wireless Sensor Network (WSN) node is presented. RL allows for truly autonomous optimal behaviour of agents by requiring no models or supervision to learn. Optimal actions are learnt by repeated interactions with the environment. Performance results are presented for Monte Carlo, TD0 and TDλ. The resultant optimal learned policies are shown to out perform static power control in a stochastic environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamically Adapted Low-Energy Fault Tolerant Processors Partial Bitstream 2-D Core Relocation for Reconfigurable Architectures Automated Wire Antennas Design using Dynamic Dominance Evolutionary Algorithm Adaptive Hardware Real-Time Task Scheduler of Multi-Core ATPA Environment Evolutionary Algorithms in Unreliable Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1