海报:BACM:不规则内存密集型GPGPU工作负载的屏障感知缓存管理

Yuxi Liu, Xia Zhao, Zhibin Yu, Zhenlin Wang, Xiaolin Wang, Yingwei Luo, L. Eeckhout
{"title":"海报:BACM:不规则内存密集型GPGPU工作负载的屏障感知缓存管理","authors":"Yuxi Liu, Xia Zhao, Zhibin Yu, Zhenlin Wang, Xiaolin Wang, Yingwei Luo, L. Eeckhout","doi":"10.1109/PACT.2017.55","DOIUrl":null,"url":null,"abstract":"General-purpose workloads running on modern graphics processing units (GPGPUs) rely on hardware-based barriers to synchronize warps within a thread block (TB). However, imbalance may exist before reaching a barrier if a GPGPU workload contains irregular memory accesses, i.e., some warps may be critical while others may not. Ideally, cache space should be reserved for the critical warps. Unfortunately, current cache management policies are unaware of the existence of barriers and critical warps, which significantly limits the performance of irregular memory-intensive GPGPU workloads.In this work, we propose Barrier-Aware Cache Management (BACM), which is built on top of two underlying policies: a greedy policy and a friendly policy. The greedy policy does not allow non-critical warps to allocate cache lines in the L1 data cache; only critical warps can. The friendly policy allows non-critical warps to allocate cache lines but only over invalid or lower-priority cache lines. Based on the L1 data cache hit rate of non-critical warps, BACM dynamically chooses between the greedy and friendly policies. By doing so, BACM reserves more cache space to accelerate critical warps, thereby improving overall performance. Experimental results show that BACM achieves an average performance improvement of 24% and 20% compared to the GTO and BAWS policies, respectively. BACM's hardware cost is limited to 96 bytes per streaming multiprocessor.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POSTER: BACM: Barrier-Aware Cache Management for Irregular Memory-Intensive GPGPU Workloads\",\"authors\":\"Yuxi Liu, Xia Zhao, Zhibin Yu, Zhenlin Wang, Xiaolin Wang, Yingwei Luo, L. Eeckhout\",\"doi\":\"10.1109/PACT.2017.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General-purpose workloads running on modern graphics processing units (GPGPUs) rely on hardware-based barriers to synchronize warps within a thread block (TB). However, imbalance may exist before reaching a barrier if a GPGPU workload contains irregular memory accesses, i.e., some warps may be critical while others may not. Ideally, cache space should be reserved for the critical warps. Unfortunately, current cache management policies are unaware of the existence of barriers and critical warps, which significantly limits the performance of irregular memory-intensive GPGPU workloads.In this work, we propose Barrier-Aware Cache Management (BACM), which is built on top of two underlying policies: a greedy policy and a friendly policy. The greedy policy does not allow non-critical warps to allocate cache lines in the L1 data cache; only critical warps can. The friendly policy allows non-critical warps to allocate cache lines but only over invalid or lower-priority cache lines. Based on the L1 data cache hit rate of non-critical warps, BACM dynamically chooses between the greedy and friendly policies. By doing so, BACM reserves more cache space to accelerate critical warps, thereby improving overall performance. Experimental results show that BACM achieves an average performance improvement of 24% and 20% compared to the GTO and BAWS policies, respectively. BACM's hardware cost is limited to 96 bytes per streaming multiprocessor.\",\"PeriodicalId\":438103,\"journal\":{\"name\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2017.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现代图形处理单元(gpgpu)上运行的通用工作负载依赖于基于硬件的屏障来同步线程块(TB)内的扭曲。然而,如果GPGPU工作负载包含不规则的内存访问,则在达到屏障之前可能存在不平衡,即一些扭曲可能是关键的,而另一些则可能不是。理想情况下,缓存空间应该为关键warp保留。不幸的是,当前的缓存管理策略没有意识到屏障和临界翘曲的存在,这极大地限制了不规则内存密集型GPGPU工作负载的性能。在这项工作中,我们提出了屏障感知缓存管理(BACM),它建立在两个基本策略之上:贪婪策略和友好策略。贪心策略不允许非关键扭曲在L1数据缓存中分配缓存线;只有临界经线可以。友好策略允许非关键warp分配缓存线,但只能在无效或低优先级的缓存线上分配。BACM基于非临界弯曲的L1数据缓存命中率,动态选择贪婪策略和友好策略。通过这样做,BACM保留了更多的缓存空间来加速关键翘曲,从而提高了整体性能。实验结果表明,与GTO和BAWS策略相比,BACM策略的平均性能分别提高了24%和20%。BACM的硬件成本限制在每个流多处理器96字节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POSTER: BACM: Barrier-Aware Cache Management for Irregular Memory-Intensive GPGPU Workloads
General-purpose workloads running on modern graphics processing units (GPGPUs) rely on hardware-based barriers to synchronize warps within a thread block (TB). However, imbalance may exist before reaching a barrier if a GPGPU workload contains irregular memory accesses, i.e., some warps may be critical while others may not. Ideally, cache space should be reserved for the critical warps. Unfortunately, current cache management policies are unaware of the existence of barriers and critical warps, which significantly limits the performance of irregular memory-intensive GPGPU workloads.In this work, we propose Barrier-Aware Cache Management (BACM), which is built on top of two underlying policies: a greedy policy and a friendly policy. The greedy policy does not allow non-critical warps to allocate cache lines in the L1 data cache; only critical warps can. The friendly policy allows non-critical warps to allocate cache lines but only over invalid or lower-priority cache lines. Based on the L1 data cache hit rate of non-critical warps, BACM dynamically chooses between the greedy and friendly policies. By doing so, BACM reserves more cache space to accelerate critical warps, thereby improving overall performance. Experimental results show that BACM achieves an average performance improvement of 24% and 20% compared to the GTO and BAWS policies, respectively. BACM's hardware cost is limited to 96 bytes per streaming multiprocessor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
POSTER: Exploiting Approximations for Energy/Quality Tradeoffs in Service-Based Applications End-to-End Deep Learning of Optimization Heuristics Large Scale Data Clustering Using Memristive k-Median Computation DrMP: Mixed Precision-Aware DRAM for High Performance Approximate and Precise Computing POSTER: Improving Datacenter Efficiency Through Partitioning-Aware Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1