基于深度q -学习的移动边缘计算工作流计算卸载

Anqi Zhu, Songtao Guo, Mingfang Ma, Hao Feng, Bei Liu, Xin Su, Minghong Guo, Qiucen Jiang
{"title":"基于深度q -学习的移动边缘计算工作流计算卸载","authors":"Anqi Zhu, Songtao Guo, Mingfang Ma, Hao Feng, Bei Liu, Xin Su, Minghong Guo, Qiucen Jiang","doi":"10.1109/WOCC.2019.8770689","DOIUrl":null,"url":null,"abstract":"Mobile edge computing (MEC) can significantly enhance device computing power by offloading service workflows from mobile device computing to mobile network edges. Thus how to implement an efficient computation offloading mechanism is a major challenge nowadays. For the purpose of addressing this problem, this paper aims to reduce application completion time and energy consumption of user device (UD) in offloading. The algorithm proposed formalizes the computation offloading problem into an energy and time optimization problem according to user experience, and obtains the optimal cost strategy on the basis of deep Q-learning (DQN). The simulation results show that comparing to the known local execution algorithm and random offloading algorithm, the computation offloading algorithm proposed in this paper can significantly reduce the energy consumption and shorten the completion time of service workflow execution.","PeriodicalId":285172,"journal":{"name":"2019 28th Wireless and Optical Communications Conference (WOCC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Computation Offloading for Workflow in Mobile Edge Computing Based on Deep Q-Learning\",\"authors\":\"Anqi Zhu, Songtao Guo, Mingfang Ma, Hao Feng, Bei Liu, Xin Su, Minghong Guo, Qiucen Jiang\",\"doi\":\"10.1109/WOCC.2019.8770689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile edge computing (MEC) can significantly enhance device computing power by offloading service workflows from mobile device computing to mobile network edges. Thus how to implement an efficient computation offloading mechanism is a major challenge nowadays. For the purpose of addressing this problem, this paper aims to reduce application completion time and energy consumption of user device (UD) in offloading. The algorithm proposed formalizes the computation offloading problem into an energy and time optimization problem according to user experience, and obtains the optimal cost strategy on the basis of deep Q-learning (DQN). The simulation results show that comparing to the known local execution algorithm and random offloading algorithm, the computation offloading algorithm proposed in this paper can significantly reduce the energy consumption and shorten the completion time of service workflow execution.\",\"PeriodicalId\":285172,\"journal\":{\"name\":\"2019 28th Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 28th Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2019.8770689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2019.8770689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

移动边缘计算(MEC)通过将业务工作流从移动设备计算转移到移动网络边缘,可以显著提高设备的计算能力。因此,如何实现一种高效的计算卸载机制是当前的主要挑战。为了解决这一问题,本文旨在减少卸载时用户设备(UD)的应用完成时间和能耗。该算法根据用户体验将计算卸载问题形式化为一个能量和时间优化问题,并基于深度q -学习(DQN)获得最优代价策略。仿真结果表明,与已知的局部执行算法和随机卸载算法相比,本文提出的计算卸载算法可以显著降低能耗,缩短服务工作流执行的完成时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computation Offloading for Workflow in Mobile Edge Computing Based on Deep Q-Learning
Mobile edge computing (MEC) can significantly enhance device computing power by offloading service workflows from mobile device computing to mobile network edges. Thus how to implement an efficient computation offloading mechanism is a major challenge nowadays. For the purpose of addressing this problem, this paper aims to reduce application completion time and energy consumption of user device (UD) in offloading. The algorithm proposed formalizes the computation offloading problem into an energy and time optimization problem according to user experience, and obtains the optimal cost strategy on the basis of deep Q-learning (DQN). The simulation results show that comparing to the known local execution algorithm and random offloading algorithm, the computation offloading algorithm proposed in this paper can significantly reduce the energy consumption and shorten the completion time of service workflow execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rogue Base Station Detection Using A Machine Learning Approach Secrecy Performance Analysis for Hybrid Satellite Terrestrial Relay Networks with Multiple Eavesdroppers Challenges of Big Data Implementation in a Public Hospital Error Analysis of Single-Satellite Interference Source Positioning Based on Different Number of Co-Frequency Beams Design and Implementation of ΣΔ-3DT Based on Multi-Core DSP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1