基于共聚焦激光扫描显微镜图像轨迹融合的三维体重建

Sang-chul Lee, P. Bajcsy
{"title":"基于共聚焦激光扫描显微镜图像轨迹融合的三维体重建","authors":"Sang-chul Lee, P. Bajcsy","doi":"10.1109/CVPR.2006.308","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of 3D volume reconstruction from depth adjacent subvolumes (i.e., sets of image frames) acquired using a confocal laser scanning microscope (CLSM). Our goal is to align sub-volumes by estimating an optimal global image transformation which preserves morphological smoothness of medical structures (called features, e.g., blood vessels) inside of a reconstructed 3D volume. We approached the problem by learning morphological characteristics of structures inside of each sub-volume, i.e. centroid trajectories of features. Next, adjacent sub-volumes are aligned by fusing the morphological characteristics of structures using extrapolation or model fitting. Finally, a global sub-volume to subvolume transformation is computed based on the entire set of fused structures. The trajectory-based 3D volume reconstruction method described here is evaluated with a pair of consecutive physical sections using two evaluation metrics for morphological continu","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Three-Dimensional Volume Reconstruction Based on Trajectory Fusion from Confocal Laser Scanning Microscope Images\",\"authors\":\"Sang-chul Lee, P. Bajcsy\",\"doi\":\"10.1109/CVPR.2006.308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of 3D volume reconstruction from depth adjacent subvolumes (i.e., sets of image frames) acquired using a confocal laser scanning microscope (CLSM). Our goal is to align sub-volumes by estimating an optimal global image transformation which preserves morphological smoothness of medical structures (called features, e.g., blood vessels) inside of a reconstructed 3D volume. We approached the problem by learning morphological characteristics of structures inside of each sub-volume, i.e. centroid trajectories of features. Next, adjacent sub-volumes are aligned by fusing the morphological characteristics of structures using extrapolation or model fitting. Finally, a global sub-volume to subvolume transformation is computed based on the entire set of fused structures. The trajectory-based 3D volume reconstruction method described here is evaluated with a pair of consecutive physical sections using two evaluation metrics for morphological continu\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们解决了使用共聚焦激光扫描显微镜(CLSM)从深度相邻子体(即图像帧集)获得的三维体重建问题。我们的目标是通过估计最优的全局图像变换来对齐子体积,该变换保留重建3D体积内医疗结构(称为特征,例如血管)的形态学平滑性。我们通过学习每个子体内部结构的形态特征,即特征的质心轨迹来解决这个问题。接下来,通过使用外推或模型拟合融合结构的形态特征来对齐相邻的子体。最后,基于整个融合结构集计算全局子体到子体的转换。本文描述的基于轨迹的三维体重建方法使用形态学连续性的两个评估指标对一对连续的物理切片进行评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-Dimensional Volume Reconstruction Based on Trajectory Fusion from Confocal Laser Scanning Microscope Images
In this paper, we address the problem of 3D volume reconstruction from depth adjacent subvolumes (i.e., sets of image frames) acquired using a confocal laser scanning microscope (CLSM). Our goal is to align sub-volumes by estimating an optimal global image transformation which preserves morphological smoothness of medical structures (called features, e.g., blood vessels) inside of a reconstructed 3D volume. We approached the problem by learning morphological characteristics of structures inside of each sub-volume, i.e. centroid trajectories of features. Next, adjacent sub-volumes are aligned by fusing the morphological characteristics of structures using extrapolation or model fitting. Finally, a global sub-volume to subvolume transformation is computed based on the entire set of fused structures. The trajectory-based 3D volume reconstruction method described here is evaluated with a pair of consecutive physical sections using two evaluation metrics for morphological continu
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1